期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
惯性行人导航零速区间检测的非线性空间K-means聚类算法
1
作者 马宇峰 戴邵武 +2 位作者 王瑞 戴洪德 郑百东 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第10期2841-2850,共10页
惯性行人导航系统中,零速区间检测的准确性直接关系着基于零速修正(ZUPT)的行人导航精度。为此,设计了一种基于非线性空间映射与K-means聚类算法结合的零速区间检测算法。通过经典零速区间检测算法广义似然比检测(GLRT)确定初始零速区间... 惯性行人导航系统中,零速区间检测的准确性直接关系着基于零速修正(ZUPT)的行人导航精度。为此,设计了一种基于非线性空间映射与K-means聚类算法结合的零速区间检测算法。通过经典零速区间检测算法广义似然比检测(GLRT)确定初始零速区间;选取零速区间与非零速区间交界处的加速度数据,将合加速度幅值作为变量,映射到设计的非线性空间中,放大数据差异;利用K-means聚类算法对映射后的数据进行聚类,经过去噪声处理后确定出更精准的零速区间;通过惯性行人导航系统实验验证非线性空间K-means聚类零速区间检测算法的有效性。实验表明,所提出的惯性行人导航零速区间检测的非线性空间K-means聚类算法相比于GLRT算法和基于K-means聚类的零速区间检测算法,定位精度显著提高,并在匀速行走、变速行走和长距离长航时行走3种运动模式下进行了实验验证;相比基于K-means聚类的零速区间检测算法,减小了计算量。所提算法能够自适应不同的运动状态,无需随时调整阈值,且理论上可以优化任意传统零速区间检测算法,具有良好的工程应用价值。 展开更多
关键词 零速检测 惯性行人导航 非线性空间映射 K-MEANS聚类 零速区间
下载PDF
Fault Diagnosis Based on MultiKernel Classification and Information Fusion Decision
2
作者 Mohammad Reza Vazifeh Pan Hao Farzaneh Abbasi 《Computer Technology and Application》 2013年第8期404-409,共6页
In machine learning and statistics, classification is the a new observation belongs, on the basis of a training set of data problem of identifying to which of a set of categories (sub-populations) containing observa... In machine learning and statistics, classification is the a new observation belongs, on the basis of a training set of data problem of identifying to which of a set of categories (sub-populations) containing observations (or instances) whose category membership is known. SVM (support vector machines) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. The basic SVM takes a set of input data and predicts, for each given input, which of two possible classes fon^as the output, making it a non-probabilistic binary linear classifier. In pattern recognition problem, the selection of the features used for characterization an object to be classified is importance. Kernel methods are algorithms that, by replacing the inner product with an appropriate positive definite function, impticitly perform a nonlinear mapping 4~ of the input data in Rainto a high-dimensional feature space H. Cover's theorem states that if the transformation is nonlinear and the dimensionality of the feature space is high enough, then the input space may be transformed into a new feature space where the patterns are linearly separable with high probability. 展开更多
关键词 Fault diagnosis wavelet-kernel information fusion multi classification.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部