IPMC(Ionic Polymer Metal Composite)人工肌肉是一种离子交换聚合金属材料,由于具有在低电压作用下可以产生较大弯曲的特性,已经被作为分布式传感器和执行器广泛应用于各种仿生机器人构建中。为了在各种仿生机器人中应用IPMC人工肌肉,...IPMC(Ionic Polymer Metal Composite)人工肌肉是一种离子交换聚合金属材料,由于具有在低电压作用下可以产生较大弯曲的特性,已经被作为分布式传感器和执行器广泛应用于各种仿生机器人构建中。为了在各种仿生机器人中应用IPMC人工肌肉,期望的位置或偏移量必须能够精确地控制。针对这个问题,通过应用鲁棒右互质分解方法,本文设计一种基于演算子理论的IPMC人工肌肉精确位置控制系统,该系统不仅保证了鲁棒稳定性,而且能够实现精确的位置跟踪。最后,通过仿真和实验结果,系统的有效性进一步得到验证。展开更多
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolu...Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.展开更多
Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati...Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.展开更多
A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Ves...A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation and Nizhnik Novikov-Vesselov equation, both the Lie point symmetry groups and the non-Lie symmetry groups are obtained. The Lie symmetry groups obtained via traditional Lie approaches are only speciai cases. Furthermore, the expressions of the exact finite transformations of the Lie groups are much simpler than those obtained via the standard approaches.展开更多
The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explici...The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.展开更多
In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the...In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.展开更多
Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ...By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.展开更多
Using Lou and Ni's deformation and mapping idea in nonlinear equations to a set of fifth order KdV type equations, it is found that some types of solitary wave solutions and periodic solutions with special velocit...Using Lou and Ni's deformation and mapping idea in nonlinear equations to a set of fifth order KdV type equations, it is found that some types of solitary wave solutions and periodic solutions with special velocities can be linearly superposed to new exact solutions.展开更多
Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.u...Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.展开更多
The exact solutions of the general nonlinear dynamic system in a new double-chain model of DNA are studied by using both the Conte's Painlevé truncation expansion and the Pickering's truncation expansion....The exact solutions of the general nonlinear dynamic system in a new double-chain model of DNA are studied by using both the Conte's Painlevé truncation expansion and the Pickering's truncation expansion. The symmetric kink-kink shape excitations can be found in both the Conte's truncation expansion and the Pickering's truncation expansion. Three types of new localized excitations, the asymmetric kink-kink excitations, the soliton-kink excitation, and the kink-soliton excitations, are found by using the Pickering's nonstandard truncation expansion.展开更多
The present paper discusses a class of nonlinear diffusion-convection equations with source. The method that we use is the conditional symmetry method. It is shown that the equation admits certain conditional symmetri...The present paper discusses a class of nonlinear diffusion-convection equations with source. The method that we use is the conditional symmetry method. It is shown that the equation admits certain conditional symmetries for coefficient functions of the equations. As a consequence, solutions to the resulting equations are obtained.展开更多
Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the a...Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the availability of symbolic computation. These solutions include the Jacobi elliptic function solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. In the limiting cases, the solitary wave solutions are obtained and some known solutions are also recovered.展开更多
The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ...The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.展开更多
Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to t...Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.展开更多
Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cyl...Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cylindrical NLS equations are presented. Nine related linear independent infinitesimal generators can be obtained from the finite symmetry transformation groups by restricting the arbitrary constants in infinitesimal forms. Some exact solutions are derived from a simple travelling wave solution.展开更多
文摘IPMC(Ionic Polymer Metal Composite)人工肌肉是一种离子交换聚合金属材料,由于具有在低电压作用下可以产生较大弯曲的特性,已经被作为分布式传感器和执行器广泛应用于各种仿生机器人构建中。为了在各种仿生机器人中应用IPMC人工肌肉,期望的位置或偏移量必须能够精确地控制。针对这个问题,通过应用鲁棒右互质分解方法,本文设计一种基于演算子理论的IPMC人工肌肉精确位置控制系统,该系统不仅保证了鲁棒稳定性,而且能够实现精确的位置跟踪。最后,通过仿真和实验结果,系统的有效性进一步得到验证。
文摘Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.
文摘Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.
基金The project supported by the National 0utstanding Youth Foundation of China under Grant No. 19925522 and the National Natural Science Foundation of China under Grant Nos. 90203001, 10475055. The authors are in debt to thank helpful discussions with Drs. X.Y. Tang, C.L. Chen, Y. Chen, H.C. Hu, X.M. Qian, B. Tong, and W.R. Cai.
文摘A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation and Nizhnik Novikov-Vesselov equation, both the Lie point symmetry groups and the non-Lie symmetry groups are obtained. The Lie symmetry groups obtained via traditional Lie approaches are only speciai cases. Furthermore, the expressions of the exact finite transformations of the Lie groups are much simpler than those obtained via the standard approaches.
文摘The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.
文摘In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.
文摘Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.
基金The project supported by National Natural Science Foundations of China under Grant Nos. 90203001, 10475055, 40305009, and 10547124
文摘By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.
文摘Using Lou and Ni's deformation and mapping idea in nonlinear equations to a set of fifth order KdV type equations, it is found that some types of solitary wave solutions and periodic solutions with special velocities can be linearly superposed to new exact solutions.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx 16
文摘Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.
基金国家杰出青年科学基金,the Research Fund for the Doctoral Program of Higher Education of China,国家自然科学基金
文摘The exact solutions of the general nonlinear dynamic system in a new double-chain model of DNA are studied by using both the Conte's Painlevé truncation expansion and the Pickering's truncation expansion. The symmetric kink-kink shape excitations can be found in both the Conte's truncation expansion and the Pickering's truncation expansion. Three types of new localized excitations, the asymmetric kink-kink excitations, the soliton-kink excitation, and the kink-soliton excitations, are found by using the Pickering's nonstandard truncation expansion.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968.
文摘The present paper discusses a class of nonlinear diffusion-convection equations with source. The method that we use is the conditional symmetry method. It is shown that the equation admits certain conditional symmetries for coefficient functions of the equations. As a consequence, solutions to the resulting equations are obtained.
文摘Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the availability of symbolic computation. These solutions include the Jacobi elliptic function solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. In the limiting cases, the solitary wave solutions are obtained and some known solutions are also recovered.
基金The project supported in part by National Natural Science Foundation of China under Grant No.19901027the Natural Science Foundation of Shaanxi Province of China
文摘The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.
文摘Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.
基金The project supported by K.C. Wong Magna Fund in Ningbo University, National Natural Science Foundation of China under Grant Nos. 10747141 and 10735030;Zhejiang Provincial Natural Science Foundations of China under Grant No. 605408;Ningbo Natural Science Foundation under Grant Nos. 2007A610049 and 2006A610093;National Basic Research Program of China (973 Program 2007CB814800);Program for Changjiang Scholars and Innovative Research Team in University (IRTO734)
文摘Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cylindrical NLS equations are presented. Nine related linear independent infinitesimal generators can be obtained from the finite symmetry transformation groups by restricting the arbitrary constants in infinitesimal forms. Some exact solutions are derived from a simple travelling wave solution.