期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
改进的强跟踪求积分卡尔曼滤波算法 被引量:3
1
作者 贺姗 赵旭 师昕 《计算机技术与发展》 2018年第7期43-47,共5页
在非线性系统状态估计问题中,强跟踪求积分卡尔曼滤波算法在实现过程中由于对判断滤波发散的阈值设置较小,即使在系统正常情况下也会以较大概率产生渐消因子,从而导致过度调节滤波增益,使得系统状态估计不够平滑。针对该问题,提出了一... 在非线性系统状态估计问题中,强跟踪求积分卡尔曼滤波算法在实现过程中由于对判断滤波发散的阈值设置较小,即使在系统正常情况下也会以较大概率产生渐消因子,从而导致过度调节滤波增益,使得系统状态估计不够平滑。针对该问题,提出了一种改进的强跟踪求积分卡尔曼滤波算法。该算法通过适当增大判断滤波发散的阈值,从而有效地降低了误判滤波发散的概率,增强了滤波器对系统状态的跟踪性能,并能够根据不同维数的量测方程确定弱化因子的取值,从而有效避免了凭经验选取弱化因子,具有较强的操作性。对两种算法进行实验仿真,结果表明,改进的强跟踪求积分卡尔曼滤波算法具有更高的滤波精度,减小了系统状态估计值与真实值之间的偏差。 展开更多
关键词 非线性系统状态估计 强跟踪求积分卡尔曼滤波 渐消因子 弱化因子
下载PDF
DESIGN OF NONLINEAR OBSERVER FOR NONLINEAR SYSTEM BASED ON RBF NEURAL NETWORKS
2
作者 龚华军 Chowdhury F N 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期311-315,共5页
A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is a... A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is approximated. Compared with the conventional linear observer, the observer provides more accurate estimation of the state. The state estimation error is proved to asymptotically approach zero with the Lyapunov method. The simulation result shows that the proposed observer scheme is effective and has a potential application ability in the fault detection and identification (FDI), and the state estimation. 展开更多
关键词 observer nonlinear system state estimation neural network
下载PDF
Comparison of Linearized Kalman Filter and Extended Kalman Filter for Satellite Motion States Estimation 被引量:1
3
作者 杨亚非 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期307-311,共5页
The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but i... The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect. 展开更多
关键词 nonlinear filtering approach nonlinear system satellite orbit state space state estimation
下载PDF
Unscented Transformation Based Robust Kalman Filter and Its Applications in Fermentation Process 被引量:12
4
作者 王建林 冯絮影 +1 位作者 赵利强 于涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期412-418,共7页
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele... State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations. 展开更多
关键词 robust Kalman filter unscented transformation fermentation process nonlinear system
下载PDF
Multi-sensor federated unscented Kalman filtering algorithm in intermittent observations 被引量:1
5
作者 胡振涛 Hu Yumei Li Song 《High Technology Letters》 EI CAS 2015年第2期132-139,共8页
Aiming at the adverse effect caused by limited detecting probability of sensors on filtering preci- sion of a nonlinear system state, a novel muhi-sensor federated unscented Kalman filtering algorithm is proposed. Fir... Aiming at the adverse effect caused by limited detecting probability of sensors on filtering preci- sion of a nonlinear system state, a novel muhi-sensor federated unscented Kalman filtering algorithm is proposed. Firstly, combined with the residual detection strategy, effective observations are cor- rectly identified. Secondly, according to the missing characteristic of observations and the structural feature of unscented Kalman filter, the iterative process of the single-sensor unscented Kalman filter in intermittent observations is given. The key idea is that the state estimation and its error covariance matrix are replaced by the state one-step prediction and its error covariance matrix, when the phe- nomenon of observations missing occurs. Finally, based on the realization mechanism of federated filter, a new fusion framework of state estimation from each local node is designed. And the filtering precision of system state is improved further by the effective management of observations missing and the rational utilization of redundancy and complementary information among multi-sensor observa- tions. The theory analysis and simulation results show the feasibility and effectiveness of the pro- posed algorithm. 展开更多
关键词 nonlinear estimation intermittent observations unscented Kalman filter federated filter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部