The stabilization problem via the linear output feedback controller is addressed for a class of nonlinear systems subject to time-delay.The uncertainty of the system satisfies the lower-triangular growth condition and...The stabilization problem via the linear output feedback controller is addressed for a class of nonlinear systems subject to time-delay.The uncertainty of the system satisfies the lower-triangular growth condition and it is affected by time-delay. A linear output feedback controller with a tunable scaling gain is constructed.By selecting an appropriate Lyapunov-Krasovskii functional the scaling gain can be adjusted to render the closed-loop system globally asymptotically stable.The results can also be extended to the non-triangular nonlinear time-delay systems. The proposed control law together with the observer is linear and memoryless in nature and therefore it is easy to implement in practice. Two computer simulations are conducted to illustrate the effectiveness of the proposed theoretical results.展开更多
Robust fault diagnosis problems based on adaptive observer technique are studied for a class of time delayed nonlinear system with external disturbance. Adaptive fault updating laws were designed to estimate the fault...Robust fault diagnosis problems based on adaptive observer technique are studied for a class of time delayed nonlinear system with external disturbance. Adaptive fault updating laws were designed to estimate the fault and to guarantee the stability of the diagnosis system. The effects of adjusting parameters in adaptive fault updating laws on the fault estimation accuracy were analyzed. For a designed fault diagnosis system,the super bounds of the state estimation error and fault estimation error of the adaptive observer were discussed,which further showed how the parameters in the adaptive fault updating laws influenced the fault estimation accuracy. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
In this paper, a mathematic description of a class of uncertain nonlinear large scale systems based on some practical application is given. A designing method to construct observers for su...In this paper, a mathematic description of a class of uncertain nonlinear large scale systems based on some practical application is given. A designing method to construct observers for such kind of nonlinear composite systems is developed. The unknown parameters and disturbances are assumed to be neither linear nor matched. A numerical example is used to illustrate the efficiency of our results.展开更多
基金The National Natural Science Foundation of China(No.61273119,61174076,61004046,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)the Research Fund for the Doctoral Program of Higher Education of China(No.20110092110021)
文摘The stabilization problem via the linear output feedback controller is addressed for a class of nonlinear systems subject to time-delay.The uncertainty of the system satisfies the lower-triangular growth condition and it is affected by time-delay. A linear output feedback controller with a tunable scaling gain is constructed.By selecting an appropriate Lyapunov-Krasovskii functional the scaling gain can be adjusted to render the closed-loop system globally asymptotically stable.The results can also be extended to the non-triangular nonlinear time-delay systems. The proposed control law together with the observer is linear and memoryless in nature and therefore it is easy to implement in practice. Two computer simulations are conducted to illustrate the effectiveness of the proposed theoretical results.
基金the National Natural Science Foundation of China (Grant No.60572070, 60521003, 60774048, 60774093)Open Project Foundation of Key Laboratory of Process Industry Automation, Ministry of Education China (Grant No.PAL200503)the China Postdoctoral Science Foundation (Grant No.20060400962).
文摘Robust fault diagnosis problems based on adaptive observer technique are studied for a class of time delayed nonlinear system with external disturbance. Adaptive fault updating laws were designed to estimate the fault and to guarantee the stability of the diagnosis system. The effects of adjusting parameters in adaptive fault updating laws on the fault estimation accuracy were analyzed. For a designed fault diagnosis system,the super bounds of the state estimation error and fault estimation error of the adaptive observer were discussed,which further showed how the parameters in the adaptive fault updating laws influenced the fault estimation accuracy. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
文摘In this paper, a mathematic description of a class of uncertain nonlinear large scale systems based on some practical application is given. A designing method to construct observers for such kind of nonlinear composite systems is developed. The unknown parameters and disturbances are assumed to be neither linear nor matched. A numerical example is used to illustrate the efficiency of our results.