In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on...In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.展开更多
The objective of this paper is to investigate the consensus of the multi-agent systems w/th nonlinear coupling function and external disturbances. The disturbance includes two parts, one part is supposed to be generat...The objective of this paper is to investigate the consensus of the multi-agent systems w/th nonlinear coupling function and external disturbances. The disturbance includes two parts, one part is supposed to be generated by an exogenous system, which is not required to be neutrally stable as in the output regulation theory, the other part is the modeling uncertainty in the exogenous disturbance system. A novel composite disturbance observer based control (DOBC) and H∞ control scheme is presented so that the disturbance with the exogenous system can be estimated and compensated and the consensus of the multi-agent systems with fixed and switching graph can be reached by using Hoo control law. Simulations demonstrate the advantages of the proposed DOBC and H∞ control scheme.展开更多
This paper shows the existence of insensitizing controls for a class of nonlinear complex Ginzburg- Landau equations with homogeneous Dirichlet boundary conditions and arbitrarily located internal controller. When the...This paper shows the existence of insensitizing controls for a class of nonlinear complex Ginzburg- Landau equations with homogeneous Dirichlet boundary conditions and arbitrarily located internal controller. When the nonlinearity in the equation satisfies a suitable superlinear growth condition at infinity, the existence of insensitizing controls for the corresponding semilinear Ginzburg-Landau equation is proved. Meanwhile, if the nonlinearity in the equation is only a smooth function without any additional growth condition, a local result on insensitizing controls is obtained. As usual, the problem of insensitizing controls is transforlned into a suitable controllability problem for a coupled system governed by a semilinear complex Ginzburg-Landau equation and a linear one through one control. The key is to establish an observability inequality for a coupled linear Ginzburg-Landau system with one observer.展开更多
基金Project(2015AA043003)supported by National High-technology Research and Development Program of ChinaProject(GY2016ZB0068)supported by Application Technology Research and Development Program of Heilongjiang Province,ChinaProject(SKLR201301A03)supported by Self-planned Task of State Key Laboratory of Robotics and System(Harbin Institute of Technology),China
文摘In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.
基金Supported by the National Excellence Youth Science Foundation of China under Grant No.60925012the National Basic Research Science Program of China under Grant No.2012CB720000+3 种基金973 Programthe National Natural Science Foundation of China under Grant Nos.60875039,60904022,60805039,and 60774013the Science Foundation of China postdoctoral under Grant No.2011M500205the Natural Science Foundation of Shandong Province of China under Grant No.ZR2011FM017
文摘The objective of this paper is to investigate the consensus of the multi-agent systems w/th nonlinear coupling function and external disturbances. The disturbance includes two parts, one part is supposed to be generated by an exogenous system, which is not required to be neutrally stable as in the output regulation theory, the other part is the modeling uncertainty in the exogenous disturbance system. A novel composite disturbance observer based control (DOBC) and H∞ control scheme is presented so that the disturbance with the exogenous system can be estimated and compensated and the consensus of the multi-agent systems with fixed and switching graph can be reached by using Hoo control law. Simulations demonstrate the advantages of the proposed DOBC and H∞ control scheme.
基金supported by National Natural Science Foundation of China(Grant Nos.11371084 and 11171060)National Basic Research Program of China(973 Program)(Grant No.2011CB808002)Program for New Century Excellent Talents in University(Grant No.NCET-12-0812)
文摘This paper shows the existence of insensitizing controls for a class of nonlinear complex Ginzburg- Landau equations with homogeneous Dirichlet boundary conditions and arbitrarily located internal controller. When the nonlinearity in the equation satisfies a suitable superlinear growth condition at infinity, the existence of insensitizing controls for the corresponding semilinear Ginzburg-Landau equation is proved. Meanwhile, if the nonlinearity in the equation is only a smooth function without any additional growth condition, a local result on insensitizing controls is obtained. As usual, the problem of insensitizing controls is transforlned into a suitable controllability problem for a coupled system governed by a semilinear complex Ginzburg-Landau equation and a linear one through one control. The key is to establish an observability inequality for a coupled linear Ginzburg-Landau system with one observer.