期刊文献+
共找到2,679篇文章
< 1 2 134 >
每页显示 20 50 100
基于非线性自回归神经网络模型对生活垃圾产生量的预测
1
作者 朱远超 王晓燕 田光 《四川环境》 2024年第3期149-153,共5页
旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历... 旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历史时间序列预测模型。实验结果显示,NAR神经网络时间序列模型对于北京市生活垃圾产生量有较好的预测能力,当延迟阶数为5,隐含神经元个数为10时,预测模型测试集的r值为0.9717,平均绝对百分比误差为3.385%,均方根误差为5051.831 t/w,预测模型通过了残差序列非自相关检验,预测效果较好。结论表明针对生活垃圾产生量数据可以开展NAR神经网络模型非线性自回归预测,且可不用考虑其它相关影响因素数据的可获得性,具有一定的便利和实际应用意义。 展开更多
关键词 生活垃圾 预测模型 非线性自回归 神经网络
下载PDF
基于多元非线性回归和BP神经网络模型对黄河水沙监测数据特征分析的比较
2
作者 孔豪杰 《浙江工商职业技术学院学报》 2024年第1期18-22,共5页
利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也... 利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也为监管机关制定合理有效的检测方案提供了有力的支持。 展开更多
关键词 三次样条插值 多元非线性回归 BP神经网络 误差率
下载PDF
基于神经网络的轮式移动机器人非线性模型预测控制研究
3
作者 赵卫东 张延义 《中国工程机械学报》 北大核心 2024年第4期432-436,共5页
针对轮式移动机器人受到障碍物干扰导致运动轨迹跟踪误差较大问题,提出了神经网络非线性模型预测(NN-NMP)控制方法,并对轮式移动机器人避障效果进行仿真验证。建立了轮式移动机器人运动模型,并且定义了机器人运动方程式。设计非线性模... 针对轮式移动机器人受到障碍物干扰导致运动轨迹跟踪误差较大问题,提出了神经网络非线性模型预测(NN-NMP)控制方法,并对轮式移动机器人避障效果进行仿真验证。建立了轮式移动机器人运动模型,并且定义了机器人运动方程式。设计非线性模型预测控制方法,引用神经网络算法,通过训练多层神经网络对非线性模型预测控制误差进行逼近,从而使轮式移动机器人控制系统具有更好的避障能力。设置3种不同环境,利用Matlab软件对轮式移动机器人避障结果进行仿真,对比和分析轮式移动机器人采用2种控制方法的输出结果。结果显示:在无障碍物环境中,采用传统比例-积分-微分(PID)控制方法和NN-NMP控制方法,轮式移动机器人均能较好地按照期望轨迹进行移动。在有障碍物环境中,采用传统PID控制方法,轮式移动机器人虽然能够躲避障碍物,但是跟踪误差较大。采用NN-NMP控制方法,轮式移动机器人不仅能够躲避障碍物,而且跟踪误差相对较小。采用NN-NMP控制方法,能够降低轮式移动机器人跟踪误差,具有较好的避障能力。 展开更多
关键词 轮式移动机器人 避障 神经网络非线性模型预测控制 误差 仿真
下载PDF
多元线性回归模型与多层感知器神经网络在铀矿测井泥质含量预测中的应用
4
作者 张喆安 刘龙成 +2 位作者 王书黎 白云龙 谢廷婷 《铀矿地质》 CAS CSCD 2024年第5期1007-1013,共7页
在铀矿资源勘探工作中,泥质含量的测定对于确定地下岩层的性质和砂岩型铀矿床的分布具有重要意义。文章旨在避免常规测井解释计算方法受到希尔奇系数选取准确性的限制,提出了利用多元线性回归模型和多层感知器(MLP,Multilayer Perceptr... 在铀矿资源勘探工作中,泥质含量的测定对于确定地下岩层的性质和砂岩型铀矿床的分布具有重要意义。文章旨在避免常规测井解释计算方法受到希尔奇系数选取准确性的限制,提出了利用多元线性回归模型和多层感知器(MLP,Multilayer Perceptron)神经网络对测井数据进行分析与预测的方法。通过选取某地区的测井数据,采用多元线性回归模型和MLP神经网络进行了泥质含量关系模型的构建和验证。结果显示,多元线性回归模型在泥质含量低层位出现过拟合现象,而MLP神经网络则表现出更高的预测准确性,MLP神经网络在泥质含量预测中优于传统多元线性回归模型,为铀矿勘探中泥质含量的准确预测提供了有效工具,并有望改进现有的泥质含量评价方法。这些研究成果可显著提升测井解释的效率和准确性,对后续铀矿勘探开发工作的开展具有积极影响。 展开更多
关键词 铀矿测井 泥质含量 多元线性回归模型 多层感知器神经网络
下载PDF
基于Probit回归模型和BP神经网络模型的宁夏盐池滩羊产量影响因素及预测研究
5
作者 陈翔 王劲松 +3 位作者 王晓静 闫玥 李月祥 于艳丽 《现代化农业》 2024年第2期82-84,共3页
通过对滩羊养殖户户主和家庭基本特征、养殖场生产经营特征、优质化生产认知情况以及疫病防治情况进行调查,采用Probit回归模型和BP神经网络模型分析了宁夏盐池县12个滩羊养殖村滩羊肉产量的影响因素,并预测了未来5年的滩羊肉产量情况,... 通过对滩羊养殖户户主和家庭基本特征、养殖场生产经营特征、优质化生产认知情况以及疫病防治情况进行调查,采用Probit回归模型和BP神经网络模型分析了宁夏盐池县12个滩羊养殖村滩羊肉产量的影响因素,并预测了未来5年的滩羊肉产量情况,预测结果表明到2025年,宁夏滩羊产量将达12.5万t,宁夏滩羊产业总体呈现良好的发展势头。 展开更多
关键词 Probit回归模型 BP神经网络模型 宁夏滩羊 产量影响因素 产量预测
下载PDF
基于Logistic回归和神经网络的甘肃省道路结冰预警模型研究
6
作者 鲍丽丽 程鹏 +5 位作者 王小勇 何金梅 闫昕旸 尹春 李晓琴 赵文婧 《干旱气象》 2024年第1期137-145,共9页
为更好地开展公路交通道路结冰预报预警服务工作,利用甘肃省道路结冰高发区路段(甘肃武威以东)的交通气象站逐小时观测资料,分析道路结冰空间分布特征,探讨道路结冰与气象要素的相关性,采用Logistic回归法和神经网络算法构建道路结冰预... 为更好地开展公路交通道路结冰预报预警服务工作,利用甘肃省道路结冰高发区路段(甘肃武威以东)的交通气象站逐小时观测资料,分析道路结冰空间分布特征,探讨道路结冰与气象要素的相关性,采用Logistic回归法和神经网络算法构建道路结冰预警模型。结果表明:甘肃省道路结冰主要集中在冬季(12月至次年2月),其中00:00—10:00和22:00—23:00(北京时)出现道路结冰的频率较高。Logistic回归模型和神经网络模型对未发生结冰事件的预测准确率较高,分别为91.9%和96.2%;针对发生结冰事件,Logistic回归模型的预测准确率较低,为31.6%,而神经网络模型的预测准确率可达44.6%,说明2种模型对道路结冰预警有一定指示意义,神经网络模型预测效果优于Logistic回归模型。 展开更多
关键词 道路结冰 时空分布特征 Logistic回归 神经网络模型
下载PDF
基于自回归小波神经网络的机械臂自适应滑模控制
7
作者 杨佳 吴佩林 +2 位作者 杨理 寇东山 余斌 《空间控制技术与应用》 CSCD 北大核心 2024年第3期68-76,共9页
针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种... 针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种非奇异终端滑模面.利用多组自回归小波神经网络(self-recurrent wavelet neural network, SRWNN)分块逼近系统未知的动力学模型参数,并采用自适应更新律调整权重.通过积分控制项补偿SRWNN的逼近误差,并使用Lyapunov稳定性理论证明了系统稳定性.使用MATLAB进行仿真分析,分块SRWNN滑模控制与滑模控制、整体SRWNN滑模控制相比,关节角度跟踪误差的平均稳态误差分别降低了31.9%、76.5%,表明此方法是一种可靠、有效的轨迹跟踪控制方法. 展开更多
关键词 自回归小波神经网络 非奇异终端滑模 动力学模型 轨迹跟踪
下载PDF
基于多元线性逐步回归和BP神经网络建立鸭梨盛花期预测模型 被引量:3
8
作者 王鹏飞 李涛 +6 位作者 于春亮 薛敏 张玉星 张海霞 权畅 许建锋 马辉 《山东农业科学》 北大核心 2023年第7期159-166,共8页
本研究基于2002—2020年河北省魏县鸭梨盛花期观测资料和气象数据,采用线性趋势法揭示其盛花期变化趋势,并通过相关性分析筛选出显著影响盛花期的气象因子,然后分别用BP神经网络、多元线性逐步回归方法建立盛花期预测模型,以决定系数、... 本研究基于2002—2020年河北省魏县鸭梨盛花期观测资料和气象数据,采用线性趋势法揭示其盛花期变化趋势,并通过相关性分析筛选出显著影响盛花期的气象因子,然后分别用BP神经网络、多元线性逐步回归方法建立盛花期预测模型,以决定系数、均方根误差、预测准确/误差率为评判指标对模型预测精度进行评价。结果表明,2002—2020年魏县鸭梨盛花期呈现提前趋势,每10年平均提前2.4天。有13个气象因子与盛花期极显著相关(P<0.010),相关系数在-0.575~-0.852。两种预测模型均可在3月上旬对盛花期进行预报,基于最早盛花期可提前13天预报,基于最晚盛花期可提前29天预报。多元线性逐步回归模型的R^(2)为0.905,RMSE为1.45,R_(d1)为94.7%,R_(d2)为5.3%;BP神经网络的R^(2)为0.950,RMSE为1.05,R_(d1)为100%,R_(d2)为0;用2021和2022年的数据对两个模型的预测效果进行验证,除多元线性逐步回归模型预测的2021年盛花期日序数与实际日序数差2天外,两模型对两年盛花期的预测值与实测值一致。综合来看,BP神经网络模型的预测效果更好,准确率更高,可用于鸭梨盛花期预测,这为制定河北魏县鸭梨花期管理措施及梨花节活动方案奠定了基础。 展开更多
关键词 鸭梨 盛花期预测模型 相关分析 多元线性逐步回归 BP神经网络
下载PDF
基于反向传播神经网络的卤水蒸发速率预测模型
9
作者 李志伟 付振海 +1 位作者 张志宏 李生廷 《无机盐工业》 CAS CSCD 北大核心 2024年第1期53-58,共6页
卤水的蒸发速率是盐田生产管理中的一个重要技术参数,通过搭建室外卤水蒸发实验装置,分析了辐照强度、风速、环境温度、相对湿度、卤水温度、卤水浓度与卤水蒸发速率的关系。利用反向传播(BP)神经网络,训练构建了卤水蒸发速率预测模型,... 卤水的蒸发速率是盐田生产管理中的一个重要技术参数,通过搭建室外卤水蒸发实验装置,分析了辐照强度、风速、环境温度、相对湿度、卤水温度、卤水浓度与卤水蒸发速率的关系。利用反向传播(BP)神经网络,训练构建了卤水蒸发速率预测模型,并与传统的应用回归方法构建的模型进行比较。结果表明,BP神经网络模型和非线性回归模型的决定系数R2分别为0.902和0.884,预测平均相对误差分别为15.723%和18.943%,BP神经网络模型的拟合效果和预测能力均优于非线性回归模型。说明应用BP神经网络构建卤水蒸发速率预测模型是可行的,能够实现蒸发速率的快速估测。 展开更多
关键词 卤水蒸发速率 定量分析 非线性回归 反向传播神经网络
下载PDF
基于神经网络预测的长江引航量周期变化模型
10
作者 卢萍 石文宝 《中国航海》 CSCD 北大核心 2024年第2期56-64,共9页
为研究引航量周期变化的问题,提出通过神经网络预测的方法,对长江引航量长周期和短周期变化进行研究。在长江引航量动态分析的基础上,借助BP(Back Propagation)神经网络经验公式和反复训练的方法,构建长江引航量的长周期和短周期变化模... 为研究引航量周期变化的问题,提出通过神经网络预测的方法,对长江引航量长周期和短周期变化进行研究。在长江引航量动态分析的基础上,借助BP(Back Propagation)神经网络经验公式和反复训练的方法,构建长江引航量的长周期和短周期变化模型,通过回归拟合度数值比较,验证BP神经网络预测的准确性。从长江引航量变化规律的研究发现,长江引航量长周期变化规律和波罗的海干散货指数(IBD)关联性强,短周期变化规律受国内市场和长江航运等多变量影响。引航量的预测研究为引航机构的发展规划和资源布局提供合理的数据、决策支持,使港口能够高速、安全的发展;周期变化的规律将应用于疫情防控下航运影响分析,为精准疫情防控和引航标准与规范服务提供科学参考。 展开更多
关键词 水路运输 变化模型 神经网络 长江引航量 回归拟合
下载PDF
基于MLP神经网络的中国南方地区多因子PWV预测模型 被引量:1
11
作者 刘俊文 谢劭峰 +3 位作者 钟雁琴 曾印 张继洪 廖发圣 《中国科技论文》 CAS 2024年第1期99-107,122,共10页
针对利用全球导航卫星系统(global navigation satellite system,GNSS)反演高精度大气可降水量(precipitable water vapor,PWV)时需要获取大气加权平均温度(Tm)从而影响结果精度的问题,在充分探究PWV与对流层天顶湿延迟(zenith wet dela... 针对利用全球导航卫星系统(global navigation satellite system,GNSS)反演高精度大气可降水量(precipitable water vapor,PWV)时需要获取大气加权平均温度(Tm)从而影响结果精度的问题,在充分探究PWV与对流层天顶湿延迟(zenith wet delay,ZWD)等诸多因子相关性的基础上,利用中国南方地区40个探空站在2015—2017年的探空数据,基于多层感知器(multi layer perceptron,MLP)神经网络及多元回归拟合算法分别建立预测PWV的MLP模型、线性回归(linear regression,LR)模型与非线性回归(non-linear regression,NLR)模型。为充分探究2种建模方法对PWV精度的影响,利用2018年探空数据为参考值进行模型精度检验,并与传统PWV预测模型(PWV-SC2模型)进行精度对比分析。结果表明:MLP模型的年均均方根误差(RMSE)、偏差(bias)和相对误差(RE)分别为0.66 mm、0.06 mm和2.18%,相比LR模型和NLR模型年均RMSE分别降低了0.11 mm(14.6%)和0.17 mm(20.5%),年均bias分别降低了0.04 mm(43.7%)和0.28 mm(82.3%),年均RE分别降低了50.7%和57.3%;相比PWV-SC2模型,年均RMSE和bias分别降低了0.17 mm(20.5%)和0.15 mm(71.4%),年均RE降低了47.7%。因此,MLP模型在中国南方地区有较好的精度及适应性,可应用于中国南方地区高精度PWV预测。 展开更多
关键词 GNSS 大气可降水量 多层感知器 神经网络模型 回归模型 精度分析 中国南方地区
下载PDF
基于多模态神经网络的新型冠状病毒感染患者继发医院感染的预测模型分析
12
作者 徐璐 周兴蓓 +5 位作者 吴静 魏渊 谈慧颖 黄菊 邹圣强 沈硕 《抗感染药学》 2024年第5期474-478,共5页
目的:基于多模态神经网络,构建新型冠状病毒感染(COVID-19)患者继发医院感染的预测模型,为临床患者继发医院感染的防治提供参考。方法:选取2022年8月1日—2023年1月20日镇江市第三人民医院收治的2519例COVID-19患者作为研究对象,收集患... 目的:基于多模态神经网络,构建新型冠状病毒感染(COVID-19)患者继发医院感染的预测模型,为临床患者继发医院感染的防治提供参考。方法:选取2022年8月1日—2023年1月20日镇江市第三人民医院收治的2519例COVID-19患者作为研究对象,收集患者的年龄、既往病史、住院时间、抗菌药物使用、行机械通气等信息,采用多模态神经网络预测模型分析患者继发医院感染的影响因素,并与传统的多因素Logistic回归分析模型进行比较。结果:2519例COVID-19患者中发生医院感染的有312例,感染发生率为12.39%;Logistic回归分析结果显示,COVID-19患者继发医院感染与年龄、是否有高血压病史和呼吸系统疾病史、是否有经验性使用抗菌药物和免疫抑制剂、是否行机械通气具有相关性(P<0.05),其中年龄>65岁、有高血压病史、有呼吸系统疾病史、住院时间>7 d、经验性使用抗菌药物、行机械通气是患者继发医院感染的独立危险因素(P<0.05);多模态神经网络预测结果显示,住院时间、呼吸系统疾病史、年龄、经验性使用抗菌药物和机械通气是患者继发医院感染的5个最大的危险因素,其训练样本、检验样本和坚持样本的准确度分别为87.49%、86.31%和90.28%;多模态神经网络预测模型和多因素Logistic回归分析模型的接受者操作特征曲线的曲线下面积分别为0.879和0.852,并且Delong检验结果显示二者之间存在统计学差异(P<0.05)。结论:多模态神经网络预测模型和多因素Logistic回归分析模型均可以较好地预测COVID-19患者继发医院感染的相关风险,但多模态神经网络预测模型的预测结果更好。 展开更多
关键词 新型冠状病毒感染 医院感染 预测模型 多模态神经网络 多因素LOGISTIC回归分析
下载PDF
基于广义回归神经网络的煤矿带式输送机模型预测控制 被引量:1
13
作者 任志玲 王梓行 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2023年第1期92-98,共7页
针对煤矿井下运输系统能耗大、生产成本高等问题,提出基于广义回归神经网络(GRNN)的带式输送机模型预测控制(MPC)策略。引入动态自适应权重和莱维飞行策略改进天牛须算法(BAS),并采用改进的天牛须算法对广义回归神经网络进行超参数寻优... 针对煤矿井下运输系统能耗大、生产成本高等问题,提出基于广义回归神经网络(GRNN)的带式输送机模型预测控制(MPC)策略。引入动态自适应权重和莱维飞行策略改进天牛须算法(BAS),并采用改进的天牛须算法对广义回归神经网络进行超参数寻优。建立了带式运输机模型,采用模型预测控制策略对带式输送机的运行进行优化与控制;优化过程采用了基于分时电价的控制策略。实验结果表明:与带式输送机传统的运行方式相比,所提出的控制策略不仅可以减少能源消耗,而且可以有效降低运行成本。 展开更多
关键词 带式输送机 广义回归神经网络 模型预测控制 天牛须搜索算法
下载PDF
大规模数据的分布式神经网络回归模型研究
14
作者 蔡超 何馨怡 李丽 《统计与决策》 北大核心 2023年第17期34-39,共6页
随着计算机技术的飞速发展,大规模数据不断涌现,数据间呈现复杂的非线性特征,这使得传统的回归分析方法难以奏效。鉴于此,文章提出了基于交互有效方法的分布式神经网络回归(CE-RNN)模型,通过优化基于交互有效方法构建的神经网络回归模... 随着计算机技术的飞速发展,大规模数据不断涌现,数据间呈现复杂的非线性特征,这使得传统的回归分析方法难以奏效。鉴于此,文章提出了基于交互有效方法的分布式神经网络回归(CE-RNN)模型,通过优化基于交互有效方法构建的神经网络回归模型的替代损失函数来获得全局参数估计值的近似结果。该模型一方面采用分布式计算方法避免了单台机器难以处理大规模数据的难题,另一方面使用神经网络回归模型解决了非线性回归问题。数值模拟和应用研究的结果表明:CE-RNN模型的预测性能与全局神经网络回归模型基本一致,且优于基于单轮型方法的分布式神经网络回归模型。 展开更多
关键词 大规模数据 神经网络回归 分布式 交互有效 非线性
下载PDF
基于人工神经网络的非线性回归预测模型的研究 被引量:8
15
作者 高洪深 陶有德 《北方工业大学学报》 1999年第1期68-73,共6页
将人工神经网络引入回归分析过程,探讨了回归分析神经网络的结构和学习算法,研究了基于人工神经网络的模型变量的选择、观测样本的采集和使用等.进行了仿真实验,仿真结果初步显示了神经网络方法能够较好地解决传统的回归方法所面临... 将人工神经网络引入回归分析过程,探讨了回归分析神经网络的结构和学习算法,研究了基于人工神经网络的模型变量的选择、观测样本的采集和使用等.进行了仿真实验,仿真结果初步显示了神经网络方法能够较好地解决传统的回归方法所面临的困难,并具有较高的模型精度. 展开更多
关键词 神经网络 非线性回归 预测模型 参数估计
下载PDF
对称NARMA-U模型及其神经网络自校正控制器
16
作者 侯小秋 《中央民族大学学报(自然科学版)》 2024年第1期54-60,共7页
带预测误差补偿的改进NARMA-L2模型是由NARMA模型在自适应滤波动态工作点处一阶泰勒展开逼近得出的,在自适应滤波动态工作点处二阶泰勒展开逼近可得到对称NARMA-U模型,采用BP神经网络辨识对称NARMA-U模型参数,提出一广义目标函数,基于对... 带预测误差补偿的改进NARMA-L2模型是由NARMA模型在自适应滤波动态工作点处一阶泰勒展开逼近得出的,在自适应滤波动态工作点处二阶泰勒展开逼近可得到对称NARMA-U模型,采用BP神经网络辨识对称NARMA-U模型参数,提出一广义目标函数,基于对称NARMA-U模型的非线性系统的神经网络自校正控制器,应用直接极小化指标函数自适应优化算法对BP神经网络连接权重值进行在线学习。仿真研究表明算法的响应优良。 展开更多
关键词 神经网络自校正控制器 非线性系统 对称NARMA-U模型 直接极小化指标函数自适应优化算法
下载PDF
多变量系统神经网络辨识的无模型自校正控制器研究
17
作者 侯小秋 《黄河科技学院学报》 2024年第5期1-5,共5页
针对多变量NARMA模型,将其转化为具有耦合的子系统,采用具有辅助变量的多变量紧格式动态线性化方法逼近多变量NARMA模型,利用BP神经网络辨识其参数,基于多变量广义目标函数提出多变量NARMA模型的神经网络辨识的无模型自校正控制器,算法... 针对多变量NARMA模型,将其转化为具有耦合的子系统,采用具有辅助变量的多变量紧格式动态线性化方法逼近多变量NARMA模型,利用BP神经网络辨识其参数,基于多变量广义目标函数提出多变量NARMA模型的神经网络辨识的无模型自校正控制器,算法为关于控制输入的非线性方程组,通过非线性数值分析的牛顿法对其进行求解,根据非线性递推最小二乘法对BP神经网络的连接权重值进行在线学习。仿真研究表明系统的响应具有优良的性能。 展开更多
关键词 神经网络控制 模型自适应控制 自校正控制器 多变量非线性系统 多变量广义目标函数 牛顿法 非线性递推最小二乘法
下载PDF
在线优化参数的无模型预测神经网络自抗扰控制
18
作者 侯小秋 《黄河科技学院学报》 2024年第8期12-18,共7页
关于难以建模的非线性系统的控制问题,提出具有辅助变量的全格式动态线性化方法逼近非线性系统模型,基于其构建系统的预测模型,给出采用直接极小化指标函数自适应优化算法的参数估计算法,在扩张状态观测器中引入控制输入的微分项,并将... 关于难以建模的非线性系统的控制问题,提出具有辅助变量的全格式动态线性化方法逼近非线性系统模型,基于其构建系统的预测模型,给出采用直接极小化指标函数自适应优化算法的参数估计算法,在扩张状态观测器中引入控制输入的微分项,并将控制输入和其微分的系数改进为关于观测状态的函数,因其未知,使用RBF神经网络逼近,利用非线性递推最小二乘法同时优化RBF神经网络参数和自抗扰控制器参数,综上研究提出在线优化参数的无模型预测神经网络自抗扰控制算法。仿真研究验证了上述研究的合理性和有效性,系统响应精度高。 展开更多
关键词 自抗扰控制 神经网络控制 模型自适应控制 预测控制 非线性系统 直接极小化指标函数自适应优化算法 非线性递推最小二乘法 在线优化参数
下载PDF
基于优化非线性自回归神经网络模型的水质预测 被引量:11
19
作者 唐亦舜 徐庆 +1 位作者 刘振鸿 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第3期93-100,共8页
针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(... 针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(DO)质量浓度和浊度3项水质指标的变化趋势。结果表明:优化后的NAR神经网络模型具有较好的非线性处理能力;当输入数据量为180,pH、DO质量浓度和浊度的神经网络模型的延迟阶数分别为2、3、9,隐含层神经元数为10时,NAR神经网络模型对pH、DO质量浓度和浊度的预测均方根误差分别为0.053、0.382 mg/L和17.300 NTU,平均绝对百分比误差分别为0.53%、3.97%和18.01%,预测效果较好。 展开更多
关键词 水质预测 非线性自回归神经网络 PH 溶解氧 浊度 模型优化
下载PDF
基于粒子群-变分模态分解、非线性自回归神经网络与门控循环单元的滑坡位移动态预测模型研究 被引量:12
20
作者 姜宇航 王伟 +3 位作者 邹丽芳 王如宾 刘世藩 段雪雷 《岩土力学》 EI CAS CSCD 北大核心 2022年第S01期601-612,共12页
以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将... 以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将位移时间序列分解为趋势项、周期项和随机项。趋势项主要受滑坡内部因素影响,采用傅里叶曲线进行拟合预测;周期项由外部因素导致,基于格兰杰因果检验进行成因分析,并引入一种对时间序列历史状态具有较高敏感性的非线性自回归神经网络(NARX)进行预测;随机项频率较高且影响因素无法判定,采用一维门控循环单元(GRU)进行预测。最后将各分量预测位移进行叠加重构,实现滑坡累计位移的预测。结果表明,提出的(PSO-VMD)-NARX-GRU滑坡位移动态预测模型精度较高,且各位移分量预测精度明显高于静态模型中BP神经网络、支持向量机(SVM)和传统自回归模型ARIMA,可为阶跃型滑坡位移预测提供参考。 展开更多
关键词 滑坡位移预测 粒子群算法 变分模态分解 格兰杰因果检验 非线性自回归神经网络 门控循环单元
下载PDF
上一页 1 2 134 下一页 到第
使用帮助 返回顶部