期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
高阶非线性薄膜方程的李对称分析
1
作者 屈改珠 《西北师范大学学报(自然科学版)》 CAS 北大核心 2016年第6期18-21,37,共5页
利用李群分析方法研究了高阶非线性薄膜方程.首先,利用无穷小生成元方法得到了该方程的李代数及其最优系统,然后对方程进行约化,最后获得了一些具有特定物理意义的相似解.
关键词 高阶非线性薄膜方程 李对称分析 不变解
下载PDF
非线性薄膜方程的差分迭代求解
2
作者 杨岳民 《世界科技研究与发展》 CSCD 2011年第2期176-178,共3页
对类似于非线性薄膜一类的非线性偏微分方程提出一种新的算法。该法首先略去非线性部分的影响,或给予非线性部分某一初值,使非线性部分成为已知,从而将原非线性方程转化为线性方程,并按差分法或其它方法求得其线性解。再将所得线性解代... 对类似于非线性薄膜一类的非线性偏微分方程提出一种新的算法。该法首先略去非线性部分的影响,或给予非线性部分某一初值,使非线性部分成为已知,从而将原非线性方程转化为线性方程,并按差分法或其它方法求得其线性解。再将所得线性解代入非线性部分使其成为已知,再次求得其解。这样反复迭代直至收敛,进而求得原非线性方程的非线生解。 展开更多
关键词 非线性薄膜方程 差分法 迭代求解
原文传递
Classification and Reduction of Generalized Thin Film Equations 被引量:8
3
作者 ZHU Chun-Rong QU Chang-Zheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第9期403-410,共8页
Classification and reduction of the generalized fourth-order nonlinear differential equations arising from theliquid films are considered.It is shown that these equations have solutions on subspaces of the polynomial,... Classification and reduction of the generalized fourth-order nonlinear differential equations arising from theliquid films are considered.It is shown that these equations have solutions on subspaces of the polynomial,exponential ortrigonometric form defined by linear nth-order ordinary differential equations with constant coefficients for n=4,...,9.Several examples of exact solutions are presented. 展开更多
关键词 thin film equation CLASSIFICATION invariant subspaces exact solutions
下载PDF
Asymptotic analysis of nonlinear micro-film buckling
4
作者 YING ZuGuang WANG Yong ZHU ZeFei 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期1960-1963,共4页
The buckling design of micro-films has various potential applications to engineering.The substrate prestrain,interconnector buckling amplitude and critical strain are important parameters for the buckling design.In th... The buckling design of micro-films has various potential applications to engineering.The substrate prestrain,interconnector buckling amplitude and critical strain are important parameters for the buckling design.In the presented analysis,the buckled film shape was described approximately by a trigonometric function and the buckled film amplitude was obtained by minimizing the total strain energy.However,this method only generates the first-order approximate solution for the nonlinear buckling.In the present paper,an asymptotic analysis based on the rigorous nonlinear differential equation for the buckled micro-film deformations is proposed to obtain more accurate relationship of the buckling amplitude and critical strain to prestrain.The obtained results reveal the nonlinear relation and are significant to accurate buckling design of micro-films. 展开更多
关键词 BUCKLING NONLINEARITY micro-film asymptotic solution critical strain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部