期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
城镇建设适宜性评价的贝叶斯网络机器学习方法 被引量:3
1
作者 赵珂 夏清清 胡晓艳 《中国土地科学》 CSSCI CSCD 北大核心 2022年第8期109-120,共12页
研究目的:避免城镇建设适宜性评价指标及其权重体系建立的主观性,通过“数据海选—非线性认知—线性规则转化”的方式,探索能反映城镇建设适宜性影响因素之间真实联系、评价结果易于理解、便于落地实施的城镇建设适宜性评价方法。研究方... 研究目的:避免城镇建设适宜性评价指标及其权重体系建立的主观性,通过“数据海选—非线性认知—线性规则转化”的方式,探索能反映城镇建设适宜性影响因素之间真实联系、评价结果易于理解、便于落地实施的城镇建设适宜性评价方法。研究方法:非线性机器学习、贝叶斯网络模型。研究结果:贝叶斯网络非线性结构学习出的有向无圈网络(DAG)揭示了城镇建设适宜性评价指标影响的线性主次性,贝叶斯网络非线性参数学习出的各评价指标重要度映射出城镇建设适宜性评价指标的线性重要度。研究结论:对比“专家经验线性评价”、“非线性贝叶斯网络评价”“转化线性规则评价”三种方法评价结果,非线性贝叶斯网络评价结果的合理性大大高于专家经验线性评价结果,转化线性规则评价结果的准确性不如非线性贝叶斯网络评价,但误差在可接受范围内,评价出的城镇建设适宜用地更加集中连片,评价结果易于感知、理解,可行性强。 展开更多
关键词 城镇建设适宜性 机器学习 贝叶斯网络 非线性认知 线性规则
下载PDF
Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network 被引量:1
2
作者 CHEN Ning ZHOU Jia-qi +2 位作者 PENG Jun-jie GUI Wei-hua DAI Jia-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期63-74,共12页
The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard... The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions,such as oxidation reaction,hydrolysis reaction and neutralization reaction.It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity,uncertainty and time-delay.A modeling method based on time-delay fuzzy gray cognitive network(T-FGCN)for the goethite iron precipitation process was proposed in this paper.On the basis of the process mechanism,experts’practical experience and historical data,the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning(NHL)algorithm with terminal constraints.By analyzing the system in uncertain environment of varying degrees,in the environment of high uncertainty,the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one. 展开更多
关键词 time-delay fuzzy gray cognitive network(T-FGCN) iron precipitation process nonlinear Hebbian learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部