The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that...The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.展开更多
From the group movement of the bed load within the bottom layer,details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper.Whether the sediment is initiated into motion correspon...From the group movement of the bed load within the bottom layer,details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper.Whether the sediment is initiated into motion corresponds to whether the constant term in the equation is equal to zero.If constant term is zero and no dispersive force is considered,the equation represents the traditional Shields initiation curve,and if constant term is zero without the dispersive force being considered,then a new Shields curve which is much lower than the traditional one is got.The fixed point of the equation corresponds to the equilibrium sediment transport of bed load.In the mutation analysis,we have found that the inflection point is the demarcation point of breaking.In theory,the breaking point corresponds to the dividing boundary line,across which the bed form changes from flat bed to sand ripple or sand dune.Compared with the experimental data of Chatou Hydraulic Lab in France,the conclusions are verified.展开更多
As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transportin...As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.展开更多
Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- ...Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.展开更多
The logistics routes allocation discusses optimal routing from origin to destination through distribution center (DC) on condition that both transport and distribution cost should be taken into account. The problem ...The logistics routes allocation discusses optimal routing from origin to destination through distribution center (DC) on condition that both transport and distribution cost should be taken into account. The problem can be solved by the iterative non-linear programming (INLP), in which the transport cost and distribution cost are assumed to be linear and non-linear, respectively. The method works well in most situations. However, when the distribution cost predominates in the total cost, the method falls, and the solution given by the method is not a global minimum but a local minimum. Further study reveals that the INLP method is still a kind of transport routing method like vehicle routing problem (VRP), and the failure of the method must happen when the distribution cost is a major one. On such a condition, further computation on other extreme points, which physically means forcing all routes to pass through one DC one by one, should be carried out. By comparing values on these extreme points, the global optimal solution can be got. The method has both theoretical and practical meaning. In theoretical field, it might force us to seek new method; in practice, it reminds us to do such kind of check when the transport distance is short and warehousing work is major that often happens in local consolidation center or de-vanning center.展开更多
This paper is devoted to a study of the peristaltic motion of a Casson fluid of a non-Newtonian fluid accompanied in a horizontai tube.To characterize the non-Newtonian fluid behavior,we have considered the Casson flu...This paper is devoted to a study of the peristaltic motion of a Casson fluid of a non-Newtonian fluid accompanied in a horizontai tube.To characterize the non-Newtonian fluid behavior,we have considered the Casson fluid model.Suitable similarity transformations are utilized to transform the governing partial differential momentum into the non-linear ordinary differential equations.Exact analytical solutions of these equations are obtained and are the properties of velocity,pressure and profiles are then studied graphically.展开更多
Effects of wall properties and slip condition on the peristaltic flow of an incompressible pseudoplastic fluid in a curved channel are studied. Series solution of the governing problem is obtained after applying long ...Effects of wall properties and slip condition on the peristaltic flow of an incompressible pseudoplastic fluid in a curved channel are studied. Series solution of the governing problem is obtained after applying long wavelength and low Reynolds number approximations. The results are validated with the numerical solutions through the built-in routine for solving nonlinear boundary value problems via software Mathematica. The variations of different parameters on axial velocity are carefully analyzed. Behaviors of embedding parameters on the dimensionless stream function are also discussed. It is noted that the axial velocity and size of trapped bolus increases with an increase in slip parameter. It is also observed that the profiles of axial velocity are not symmetric about the central line of the curved channel which is different from the case of planar channel.展开更多
This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimens...This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimensions. After justifying this statement by recovering the Onofri inequality through various limiting procedures and after reviewing some known results, the authors state several elementary remarks.Various new results are also proved in this paper. A proof of the inequality is given by using mass transportation methods(in the radial case), consistently with similar results for Sobolev inequalities. The authors investigate how duality can be used to improve the Onofri inequality, in connection with the logarithmic Hardy-Littlewood-Sobolev inequality.In the framework of fast diffusion equations, it is established that the inequality is an entropy-entropy production inequality, which provides an integral remainder term. Finally,a proof of the inequality based on rigidity methods is given and a related nonlinear flow is introduced.展开更多
We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that ...We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (I-V) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at small bias. Moreover, the negative differential resistance behaviors can be observed significantly in the N-terminated carbon nanotube junction, whereas not in the other two cases.展开更多
基金Key Foundation Project of Shanghai (No.032912066)
文摘The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.
基金Supported by National Natural Science Foundation of China (No.50809045 and No.40776045)National Basic Research Program of China ("973" Program)(No.2007CB714101)Ministry of Education’s New Century Elitist Project of China
文摘From the group movement of the bed load within the bottom layer,details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper.Whether the sediment is initiated into motion corresponds to whether the constant term in the equation is equal to zero.If constant term is zero and no dispersive force is considered,the equation represents the traditional Shields initiation curve,and if constant term is zero without the dispersive force being considered,then a new Shields curve which is much lower than the traditional one is got.The fixed point of the equation corresponds to the equilibrium sediment transport of bed load.In the mutation analysis,we have found that the inflection point is the demarcation point of breaking.In theory,the breaking point corresponds to the dividing boundary line,across which the bed form changes from flat bed to sand ripple or sand dune.Compared with the experimental data of Chatou Hydraulic Lab in France,the conclusions are verified.
基金Project(50975290) supported by the National Natural Science Foundation of ChinaProject(2011QNZT057) supported by the Basic Operational Cost of Special Research Funding of Central Universities in ChinaProject(11JJ5028) supported by Hunan Provincial Natural Science Foundation,China
文摘As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.
基金Supported by the Natural Science Foundation of China under Grant No.10774053the Natural Science Foundation of Hubei Province of China under Grant No.2007ABA035
文摘Thermal transport in the FPU model with Kutta algorithm. The heat flux, local temperature profile, that temperature gradient scales behave as N-1 linearly. FK on-site potential is studied by using fourth-order Runge- and heat conductivity axe simulated and analyzed. It is found The divergence of heat conductivity ~ with system size N is in term of κ ∝ N^α with α = 0.44. It is shown that thermal transport is mainly dependent on the FPU nonlinear and the FK interactions.
基金the National Science Foundation,Ministry of Education and Science, Japan (No. 17330089)
文摘The logistics routes allocation discusses optimal routing from origin to destination through distribution center (DC) on condition that both transport and distribution cost should be taken into account. The problem can be solved by the iterative non-linear programming (INLP), in which the transport cost and distribution cost are assumed to be linear and non-linear, respectively. The method works well in most situations. However, when the distribution cost predominates in the total cost, the method falls, and the solution given by the method is not a global minimum but a local minimum. Further study reveals that the INLP method is still a kind of transport routing method like vehicle routing problem (VRP), and the failure of the method must happen when the distribution cost is a major one. On such a condition, further computation on other extreme points, which physically means forcing all routes to pass through one DC one by one, should be carried out. By comparing values on these extreme points, the global optimal solution can be got. The method has both theoretical and practical meaning. In theoretical field, it might force us to seek new method; in practice, it reminds us to do such kind of check when the transport distance is short and warehousing work is major that often happens in local consolidation center or de-vanning center.
文摘This paper is devoted to a study of the peristaltic motion of a Casson fluid of a non-Newtonian fluid accompanied in a horizontai tube.To characterize the non-Newtonian fluid behavior,we have considered the Casson fluid model.Suitable similarity transformations are utilized to transform the governing partial differential momentum into the non-linear ordinary differential equations.Exact analytical solutions of these equations are obtained and are the properties of velocity,pressure and profiles are then studied graphically.
文摘Effects of wall properties and slip condition on the peristaltic flow of an incompressible pseudoplastic fluid in a curved channel are studied. Series solution of the governing problem is obtained after applying long wavelength and low Reynolds number approximations. The results are validated with the numerical solutions through the built-in routine for solving nonlinear boundary value problems via software Mathematica. The variations of different parameters on axial velocity are carefully analyzed. Behaviors of embedding parameters on the dimensionless stream function are also discussed. It is noted that the axial velocity and size of trapped bolus increases with an increase in slip parameter. It is also observed that the profiles of axial velocity are not symmetric about the central line of the curved channel which is different from the case of planar channel.
基金supported by the Projects STAB and Kibord of the French National Research Agency(ANR)the Project No NAP of the French National Research Agency(ANR)the ECOS Project(No.C11E07)
文摘This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimensions. After justifying this statement by recovering the Onofri inequality through various limiting procedures and after reviewing some known results, the authors state several elementary remarks.Various new results are also proved in this paper. A proof of the inequality is given by using mass transportation methods(in the radial case), consistently with similar results for Sobolev inequalities. The authors investigate how duality can be used to improve the Onofri inequality, in connection with the logarithmic Hardy-Littlewood-Sobolev inequality.In the framework of fast diffusion equations, it is established that the inequality is an entropy-entropy production inequality, which provides an integral remainder term. Finally,a proof of the inequality based on rigidity methods is given and a related nonlinear flow is introduced.
基金supported by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2009AL004 and ZR2010AM037)
文摘We propose a novel molecular junction with single-walled carbon nanotubes as electrodes bridged by a benzene molecule, in which the electrodes are saturated by different terminations (C-, H- and N-). It is found that the different terminations at the carbon nanotube ends strongly affect the electronic transport properties of the junction. The current-voltage (I-V) curve of the N-terminated carbon nanotube junction shows a more striking nonlinear feature than that of the C- and H-terminated junctions at small bias. Moreover, the negative differential resistance behaviors can be observed significantly in the N-terminated carbon nanotube junction, whereas not in the other two cases.