The logistics routes allocation discusses optimal routing from origin to destination through distribution center (DC) on condition that both transport and distribution cost should be taken into account. The problem ...The logistics routes allocation discusses optimal routing from origin to destination through distribution center (DC) on condition that both transport and distribution cost should be taken into account. The problem can be solved by the iterative non-linear programming (INLP), in which the transport cost and distribution cost are assumed to be linear and non-linear, respectively. The method works well in most situations. However, when the distribution cost predominates in the total cost, the method falls, and the solution given by the method is not a global minimum but a local minimum. Further study reveals that the INLP method is still a kind of transport routing method like vehicle routing problem (VRP), and the failure of the method must happen when the distribution cost is a major one. On such a condition, further computation on other extreme points, which physically means forcing all routes to pass through one DC one by one, should be carried out. By comparing values on these extreme points, the global optimal solution can be got. The method has both theoretical and practical meaning. In theoretical field, it might force us to seek new method; in practice, it reminds us to do such kind of check when the transport distance is short and warehousing work is major that often happens in local consolidation center or de-vanning center.展开更多
Effects of wall properties and slip condition on the peristaltic flow of an incompressible pseudoplastic fluid in a curved channel are studied. Series solution of the governing problem is obtained after applying long ...Effects of wall properties and slip condition on the peristaltic flow of an incompressible pseudoplastic fluid in a curved channel are studied. Series solution of the governing problem is obtained after applying long wavelength and low Reynolds number approximations. The results are validated with the numerical solutions through the built-in routine for solving nonlinear boundary value problems via software Mathematica. The variations of different parameters on axial velocity are carefully analyzed. Behaviors of embedding parameters on the dimensionless stream function are also discussed. It is noted that the axial velocity and size of trapped bolus increases with an increase in slip parameter. It is also observed that the profiles of axial velocity are not symmetric about the central line of the curved channel which is different from the case of planar channel.展开更多
基金the National Science Foundation,Ministry of Education and Science, Japan (No. 17330089)
文摘The logistics routes allocation discusses optimal routing from origin to destination through distribution center (DC) on condition that both transport and distribution cost should be taken into account. The problem can be solved by the iterative non-linear programming (INLP), in which the transport cost and distribution cost are assumed to be linear and non-linear, respectively. The method works well in most situations. However, when the distribution cost predominates in the total cost, the method falls, and the solution given by the method is not a global minimum but a local minimum. Further study reveals that the INLP method is still a kind of transport routing method like vehicle routing problem (VRP), and the failure of the method must happen when the distribution cost is a major one. On such a condition, further computation on other extreme points, which physically means forcing all routes to pass through one DC one by one, should be carried out. By comparing values on these extreme points, the global optimal solution can be got. The method has both theoretical and practical meaning. In theoretical field, it might force us to seek new method; in practice, it reminds us to do such kind of check when the transport distance is short and warehousing work is major that often happens in local consolidation center or de-vanning center.
文摘Effects of wall properties and slip condition on the peristaltic flow of an incompressible pseudoplastic fluid in a curved channel are studied. Series solution of the governing problem is obtained after applying long wavelength and low Reynolds number approximations. The results are validated with the numerical solutions through the built-in routine for solving nonlinear boundary value problems via software Mathematica. The variations of different parameters on axial velocity are carefully analyzed. Behaviors of embedding parameters on the dimensionless stream function are also discussed. It is noted that the axial velocity and size of trapped bolus increases with an increase in slip parameter. It is also observed that the profiles of axial velocity are not symmetric about the central line of the curved channel which is different from the case of planar channel.