-
题名两类非线性随机微分系统的鲁棒控制
- 1
-
-
作者
王以忠
尹作友
宫清先
-
机构
山东科技大学公共课部
渤海大学信息科学与工程学院
长春工程学院电气工程系
-
出处
《渤海大学学报(自然科学版)》
CAS
2007年第2期152-154,共3页
-
基金
国家自然科学基金资助项目(No:6032531)
-
文摘
研究了两类非线性随机微分系统均方意义下鲁棒均方指数稳定性问题。系统中含有不确定性非线性多时滞扰动,利用Lyapunov-Krasovskii方法、范数的性质及Riccati方程等工具提出了相应的非线性状态反馈控制器,它们可保证所讨论的系统是均方指数稳定性的。
-
关键词
非线性随机微分系统
时滞
Lyapunov-Krasovskii方法
鲁棒控制
-
Keywords
nonlinear stohcastic differential systems
time - delay
Lyapunov - Krasovskii approach
Robust control
-
分类号
O231
[理学—运筹学与控制论]
-
-
题名无限时滞的非线性随机泛函微分方程(英文)
- 2
-
-
作者
蔡运舫
周少波
-
机构
孝感学院数学与统计学院
华中科技大学数学与统计学院
-
出处
《应用数学》
CSCD
北大核心
2011年第2期414-419,共6页
-
基金
Supported by NNSF (70871046)
HUST Foundation (0125011017)
-
文摘
本文考虑了无限时滞的非线性随机泛函微分方程,作者在局部利普希茨条件和非线性增长条件下证明了全局解的存在唯一性,矩指数稳定性和渐近稳定性.
-
关键词
非线性随机泛函微分系统
全局解
指数稳定性
渐近稳定性
-
Keywords
Nonlinear stochastic functional differential system
Global solution
Exponential stability
Asymptotic stability
-
分类号
O211.63
[理学—概率论与数理统计]
-
-
题名随机泛函微分系统的渐近性分析(英文)
- 3
-
-
作者
周少波
徐晟
-
机构
华中科技大学数学与统计学院
合肥工业大学管理学院
-
出处
《大学数学》
2014年第3期1-9,共9页
-
基金
NNSF(11301198)
HUST Foundation(0125011017)
-
文摘
针对已有的随机泛函微分系统的渐近稳定性的结果,要求系统的系数满足线性增长条件,本文主要目的是去掉这一限制条件,给出了非线性随机泛函微分系统的渐近稳定性的新结果.新的稳定性判据不仅可以涵盖更多的非线性随机泛函微分系统,而且证明方法更加简单.
-
关键词
非线性随机泛函微分系统
布朗运动
渐近稳定性
矩稳定性
李亚普诺夫函数
-
Keywords
nonlinear stochastic functional differential systems
Brownian motion
asymptotic stability
moment stability
Lyapunov functions
-
分类号
O175.12
[理学—基础数学]
-