期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于T-S模糊模型的非线性预测控制策略 被引量:22
1
作者 王寅 荣冈 王树青 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第4期599-603,共5页
提出了一种新的基于T_S模糊模型的非线性预测控制策略 .T_S模糊模型用于描述对象的非线性动态特性 ,通过将模糊模型的输出反馈回来作为模型输入 ,从而构成了模糊多步预报器 .由于T_S模糊模型每条规则的结论部分是一个线性模型 ,因此整... 提出了一种新的基于T_S模糊模型的非线性预测控制策略 .T_S模糊模型用于描述对象的非线性动态特性 ,通过将模糊模型的输出反馈回来作为模型输入 ,从而构成了模糊多步预报器 .由于T_S模糊模型每条规则的结论部分是一个线性模型 ,因此整个模糊模型可以看作一个线性时变系统 ,从而将模糊预测控制器中的非线性优化问题转化为一个线性二次寻优问题 ,以方便求解 .pH中和过程的仿真结果表明其性能优于传统的动态矩阵控制器 . 展开更多
关键词 T-S模糊模型 非线性预测控制策略 模糊多步预报器 非线性规划
下载PDF
Adaptive Nonlinear Model Predictive Control Using an On-line Support Vector Regression Updating Strategy
2
作者 王平 杨朝合 +1 位作者 田学民 黄德先 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期774-781,共8页
The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to deve... The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to develop an online SVR model updating strategy to track the change in the process characteristics efficiently with affordable computational burden. This is achieved by adding a new sample that violates the Karush–Kuhn–Tucker conditions of the existing SVR model and by deleting the old sample that has the maximum distance with respect to the newly added sample in feature space. The benefits offered by such an updating strategy are exploited to develop an adaptive model-based control scheme, where model updating and control task perform alternately.The effectiveness of the adaptive controller is demonstrated by simulation study on a continuous stirred tank reactor. The results reveal that the adaptive MPC scheme outperforms its non-adaptive counterpart for largemagnitude set point changes and variations in process parameters. 展开更多
关键词 Adaptive control Support vector regression Updating strategy Model predictive control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部