给出采用原子力显微镜(Atomic force microscope,AFM)测量线宽粗糙度(Line width roughness,LWR)的分析步骤。分析线宽和LWR及其偏差随刻线横截面位置的高度变化的关系,线宽及其偏差和LWR及其偏差随刻线横截面位置的高度值增加而减小。...给出采用原子力显微镜(Atomic force microscope,AFM)测量线宽粗糙度(Line width roughness,LWR)的分析步骤。分析线宽和LWR及其偏差随刻线横截面位置的高度变化的关系,线宽及其偏差和LWR及其偏差随刻线横截面位置的高度值增加而减小。分别采用四种边缘提取算子提取了碳纳米管针尖AFM测量的刻线顶部线宽边缘,计算了刻线顶部线宽和LWR,顶部线宽和LWR测量结果对边缘提取算子不敏感。结合被测单晶硅台阶的顶表面和底表面加工方法,提出采用各扫描线轮廓高度相等的方法校正AFM压电驱动器的z向非线性。比较了采用普通氮化硅探针针尖、超尖针尖以及碳纳米管针尖AFM测量名义线宽为1000 nm刻线LWR的结果,显示采用三种针尖的LWR测量结果存在差异,但考虑到AFM分辨率,可认为测量结果基本相同。因此,为更精确描述刻线边缘,必须提高AFM分辨率。展开更多
The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two mov...The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two moving masses which modulate its center of mass. A simple and clear modeling is introduced to derive the 8 degree of freedom (DOF) mathematical model. Nonlinear control loops are derived through maximal feedback linearization with internal stability for both dynamics in the longitudinal plane and in the lateral plane. Based on a singular perturbation approach, the superposition of these two control actions in the longitudinal plane and in the lateral plane is shown to achieve the control of the dynamics in 3-D space. The simulations of the airship tracking specified attitude, moving direction and speed in 3-D space are presented.展开更多
The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stab...The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.展开更多
This paper deals with fuzzy intelligent position control of electro-hydraulic activated robotic excavator for the control of boom, arm and bucket axes. Intelligent control systems are required to overcome unde- sirabl...This paper deals with fuzzy intelligent position control of electro-hydraulic activated robotic excavator for the control of boom, arm and bucket axes. Intelligent control systems are required to overcome unde- sirable stick-slip motion, limit cycles and oscillations. Models of electro-hydraulic servo controlled front end loader excavators are highly nonlinear. The nonlinear model accounts for fluid flow rate of valve, pump hydraulics, and friction forces. The friction forces are modelled by Coulomb, viscous and Stribeck function. Interval Type-2 Fuzzy Logic Controller (IT2FLC) is used to study the time-domain position responses of axes in the presence of external applied load. It has the ability to control the position of each of the three axes with minimum actuator position errors. Models presented are accurate and study the dynamics of the actuator and load. To improve the transient behaviour of the robotic excavator, we elim- inated iitter of the bucket movement in the presence of nonlinearities.展开更多
The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linea...The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.展开更多
The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional...The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.展开更多
基金Supported by the Scholarship Foundation of China Scholarship Council~~
文摘The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two moving masses which modulate its center of mass. A simple and clear modeling is introduced to derive the 8 degree of freedom (DOF) mathematical model. Nonlinear control loops are derived through maximal feedback linearization with internal stability for both dynamics in the longitudinal plane and in the lateral plane. Based on a singular perturbation approach, the superposition of these two control actions in the longitudinal plane and in the lateral plane is shown to achieve the control of the dynamics in 3-D space. The simulations of the airship tracking specified attitude, moving direction and speed in 3-D space are presented.
基金Project(61174047) supported by the National Natural Science Foundation of ChinaProject(20102304110003) supported by the Doctoral Fund of Ministry of Education of ChinaProject(51316080301) supported by Advanced Research
文摘The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.
文摘This paper deals with fuzzy intelligent position control of electro-hydraulic activated robotic excavator for the control of boom, arm and bucket axes. Intelligent control systems are required to overcome unde- sirable stick-slip motion, limit cycles and oscillations. Models of electro-hydraulic servo controlled front end loader excavators are highly nonlinear. The nonlinear model accounts for fluid flow rate of valve, pump hydraulics, and friction forces. The friction forces are modelled by Coulomb, viscous and Stribeck function. Interval Type-2 Fuzzy Logic Controller (IT2FLC) is used to study the time-domain position responses of axes in the presence of external applied load. It has the ability to control the position of each of the three axes with minimum actuator position errors. Models presented are accurate and study the dynamics of the actuator and load. To improve the transient behaviour of the robotic excavator, we elim- inated iitter of the bucket movement in the presence of nonlinearities.
基金Under the auspices of National Natural Science Foundation of China(No.40876010)Main Direction Program of Knowledge Innovation Programs of the Chinese Academy of Sciences(No.KZCX2-YW-Q03-08)+3 种基金R & D Special Fund for Public Welfare Industry(meteorology)(No.GYHY200806010)LASG State Key Laboratory Special FundFoundation of Shanghai Municipal Education Commission(No.E03004)Natural Science Foundation of Zhejiang Province(No.Y6090164)
文摘The thermally and wind-driven ocean circulation is a complicated natural phenomenon in the atmospheric physics. Hence we need to reduce it using basic models and solve the models using approximate methods. A non-linear model of the thermally and wind-driven ocean circulation is used in this paper. The results show that the zero solution of the linear equation is a stable focus point, which is the path curve trend origin point as time (t) trend to infinity. By using the homotopic mapping perturbation method, the exact solution of the model is obtained. The homotopic mapping perturbation method is an analytic solving method, so the obtained solution can be used for analytic operating sequentially. And then we can also obtain the diversified qualitative and quantitative behaviors for corresponding physical quantities.
文摘The nonlinear dynamic model of the marine diesel crankshaft system with a propeller and 6 cranks is established, in which the variable moment of inertia of the linkage and the piston, coupling effect between torsional and axial vibration, the actuating force applied on the piston, the actuating torque and force applied on the propeller is included. The governing equations of the model denote a strong nonlinear and non autonomous system. By numeric simulation, the dynamic response of the system to initial displacement and initial speed, variable moment of inertia, the pressure applied on the piston by combustion gas, the torque and the axial force applied on the propeller by fluid is researched respectively. According to the research results, the variable moment of inertia and coupling effect between torsional and axial vibration are the fundamental reason for nonlinear vibration. Different actuating factors can not only result in different frequency components of the response, but make the same frequency component have different vibration amplitude. The dynamic behavior of the system is not influenced obviously by the actuating torque and force applied on the propeller. There is obvious difference in sensitivity of the dynamic response in the different direction to the same actuating factor.