针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares...针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares,LS-TLS)算法及其精度估计公式。算法适用于系数矩阵包含固定列、固定元素和随机元素的一般情况。模拟实例结果表明,混合LS-TLS算法与已有能够解决系数矩阵同时含固定量和随机量的结构性或加权TLS算法的估计结果一致;混合LS-TLS的估计结果统计上要优于LS或TLS估计结果。展开更多
通过将模型的状态噪声和观测噪声均表示成高斯和的形式,推导出非线性非高斯状态空间模型的高斯和递推算法,进一步提出了对应的扩展卡尔曼和滤波器(extended Kalman sum filter,EKSF)和高斯厄密特和滤波器(Gauss-Hermite sum filter,GHSF...通过将模型的状态噪声和观测噪声均表示成高斯和的形式,推导出非线性非高斯状态空间模型的高斯和递推算法,进一步提出了对应的扩展卡尔曼和滤波器(extended Kalman sum filter,EKSF)和高斯厄密特和滤波器(Gauss-Hermite sum filter,GHSF)。EKSF和GHSF分别用扩展卡尔曼滤波器(extended Kalman filter,EKF)和高斯厄密特滤波器(Gauss-Hermite filter,GHF)作为高斯子滤波器。分析的结果表明,现有的高斯和滤波算法是本文算法的特例;仿真结果表明,EKSF和GHSF能有效处理非线性非高斯模型的状态滤波问题,与高斯和粒子滤波器(Gaussian sum particle filter,GSPF)相比,EKSF和GHSF在保证精度的同时,大大降低了计算量,仿真时间分别约为GSPF的5%和6%。展开更多
低频通信中脉冲型噪声会严重降低通信性能.针对脉冲型噪声的抑制问题,本文提出高斯拖尾零记忆非线性(Gaussian-tailed Zero Memory Nonlinearity,GZMNL)函数的最优化设计方法.GZMNL函数含有两个参数,分别控制其线性范围和拖尾程度,故适...低频通信中脉冲型噪声会严重降低通信性能.针对脉冲型噪声的抑制问题,本文提出高斯拖尾零记忆非线性(Gaussian-tailed Zero Memory Nonlinearity,GZMNL)函数的最优化设计方法.GZMNL函数含有两个参数,分别控制其线性范围和拖尾程度,故适用于多种噪声分布.本文提出GZMNL设计以效能最大化为优化目标,采用自适应搜索算法来寻找GZMNL参数的最佳值.然后讨论了GZMNL在SαS(Symmetricα-Stable,SαS)噪声分布下的快速设计方法,以及在未知噪声分布时的稳健设计方法.最后,仿真SαS噪声和实测大气噪声数据的处理结果表明:本文设计方法在检测性能上能够接近最优非线性,且能够有效抑制未知分布的噪声.展开更多
为了提高非线性变换的近似精度,提出了一种高阶无迹变换(High orderUnscented Transform,HUT)机制,利用HUT确定采样点并进行数值积分去近似状态的后验概率密度函数,建立了高阶无迹卡尔曼滤波(High-order UnscentedKalman Filter,HUKF)算...为了提高非线性变换的近似精度,提出了一种高阶无迹变换(High orderUnscented Transform,HUT)机制,利用HUT确定采样点并进行数值积分去近似状态的后验概率密度函数,建立了高阶无迹卡尔曼滤波(High-order UnscentedKalman Filter,HUKF)算法.进一步的为了解决非线性、非高斯系统的状态估计问题,将HUKF与高斯和滤波(Gaussian Sum Filter,GSF)相结合,提出了一种高斯和高阶无迹卡尔曼滤波算法(Gaussian Sum High order Unscented Kalman filter,GS-HUKF),该算法的核心思想是利用一组高斯分布的和去近似状态的后验概率密度,同时针对每一个高斯分布采用高阶无迹卡尔曼滤波算法进行估计.数值仿真实验结果表明,提出的HUT机制与普通的无迹变换(Unscented Transform,UT)相比,具有更高的近似精度;提出的GS-HUKF与传统的GSF以及高斯和粒子滤波器(Gaussian Sum Particle Filter,GS-PF)相比,兼容了二者的优点,即具有计算复杂度低和估计精度高的特性.展开更多
文摘针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares,LS-TLS)算法及其精度估计公式。算法适用于系数矩阵包含固定列、固定元素和随机元素的一般情况。模拟实例结果表明,混合LS-TLS算法与已有能够解决系数矩阵同时含固定量和随机量的结构性或加权TLS算法的估计结果一致;混合LS-TLS的估计结果统计上要优于LS或TLS估计结果。
文摘通过将模型的状态噪声和观测噪声均表示成高斯和的形式,推导出非线性非高斯状态空间模型的高斯和递推算法,进一步提出了对应的扩展卡尔曼和滤波器(extended Kalman sum filter,EKSF)和高斯厄密特和滤波器(Gauss-Hermite sum filter,GHSF)。EKSF和GHSF分别用扩展卡尔曼滤波器(extended Kalman filter,EKF)和高斯厄密特滤波器(Gauss-Hermite filter,GHF)作为高斯子滤波器。分析的结果表明,现有的高斯和滤波算法是本文算法的特例;仿真结果表明,EKSF和GHSF能有效处理非线性非高斯模型的状态滤波问题,与高斯和粒子滤波器(Gaussian sum particle filter,GSPF)相比,EKSF和GHSF在保证精度的同时,大大降低了计算量,仿真时间分别约为GSPF的5%和6%。
文摘低频通信中脉冲型噪声会严重降低通信性能.针对脉冲型噪声的抑制问题,本文提出高斯拖尾零记忆非线性(Gaussian-tailed Zero Memory Nonlinearity,GZMNL)函数的最优化设计方法.GZMNL函数含有两个参数,分别控制其线性范围和拖尾程度,故适用于多种噪声分布.本文提出GZMNL设计以效能最大化为优化目标,采用自适应搜索算法来寻找GZMNL参数的最佳值.然后讨论了GZMNL在SαS(Symmetricα-Stable,SαS)噪声分布下的快速设计方法,以及在未知噪声分布时的稳健设计方法.最后,仿真SαS噪声和实测大气噪声数据的处理结果表明:本文设计方法在检测性能上能够接近最优非线性,且能够有效抑制未知分布的噪声.
文摘为了提高非线性变换的近似精度,提出了一种高阶无迹变换(High orderUnscented Transform,HUT)机制,利用HUT确定采样点并进行数值积分去近似状态的后验概率密度函数,建立了高阶无迹卡尔曼滤波(High-order UnscentedKalman Filter,HUKF)算法.进一步的为了解决非线性、非高斯系统的状态估计问题,将HUKF与高斯和滤波(Gaussian Sum Filter,GSF)相结合,提出了一种高斯和高阶无迹卡尔曼滤波算法(Gaussian Sum High order Unscented Kalman filter,GS-HUKF),该算法的核心思想是利用一组高斯分布的和去近似状态的后验概率密度,同时针对每一个高斯分布采用高阶无迹卡尔曼滤波算法进行估计.数值仿真实验结果表明,提出的HUT机制与普通的无迹变换(Unscented Transform,UT)相比,具有更高的近似精度;提出的GS-HUKF与传统的GSF以及高斯和粒子滤波器(Gaussian Sum Particle Filter,GS-PF)相比,兼容了二者的优点,即具有计算复杂度低和估计精度高的特性.