期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
非线性BP算法在系统辨识中的应用 被引量:1
1
作者 刘英敏 吴沧浦 《北京理工大学学报》 EI CAS CSCD 2000年第6期712-714,共3页
研究利用非线性 BP算法训练多层前馈神经网络 ,对非线性动力系统进行建模 ,给出了基于非线性 BP算法的系统辨识计算步骤 .通过仿真计算表明 ,基于非线性 BP算法的系统辨识至少可以获得与常规 BP算法同样的效果 .因为不需要计算神经元激... 研究利用非线性 BP算法训练多层前馈神经网络 ,对非线性动力系统进行建模 ,给出了基于非线性 BP算法的系统辨识计算步骤 .通过仿真计算表明 ,基于非线性 BP算法的系统辨识至少可以获得与常规 BP算法同样的效果 .因为不需要计算神经元激活函数的导函数 。 展开更多
关键词 非线性bp算法 系统辨识 前馈神经网络 Nbp算法
下载PDF
基于非线性BP算法的中密度纤维板(MDF)调施胶系统辨识
2
作者 张冬妍 陈松实 王宇嘉 《木材加工机械》 2005年第4期8-10,共3页
利用三层前馈神经网络作为被辨识对象的模型,对中密度纤维板(MDF)调施胶控制系统进行建模与仿真,并给出基于非线性BP算法的调施胶系统辨识计算步骤,实现了对中密度纤维板调施胶非线性动态系统的辨识。实验结果表明,文中建立的中密度纤... 利用三层前馈神经网络作为被辨识对象的模型,对中密度纤维板(MDF)调施胶控制系统进行建模与仿真,并给出基于非线性BP算法的调施胶系统辨识计算步骤,实现了对中密度纤维板调施胶非线性动态系统的辨识。实验结果表明,文中建立的中密度纤维板调施胶系统模型是有效的,将其系统模型嵌入调施胶控制系统中可使系统响应时间变快并获得较好的控制效果。 展开更多
关键词 中密度纤维板 前馈神经网络 非线性bp算法 调施胶 系统辨识
下载PDF
Nonlinear inversion for electrical resistivity tomography based on chaotic DE-BP algorithm 被引量:4
3
作者 戴前伟 江沸菠 董莉 《Journal of Central South University》 SCIE EI CAS 2014年第5期2018-2025,共8页
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres... Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion. 展开更多
关键词 electrical resistivity tomography nonlinear inversion differential evolution back propagation network Tent map
下载PDF
Finite Convergence of On-line BP Neural Networks with Linearly Separable Training Patterns 被引量:1
4
作者 邵郅邛 吴微 杨洁 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第3期451-456,共6页
In this paper we prove a finite convergence of online BP algorithms for nonlinear feedforward neural networks when the training patterns are linearly separable.
关键词 nonlinear feedforward neural networks online bp algorithms finite convergence linearly separable training patterns.
下载PDF
FORECASTING TIME SERIES WITH GENETIC PROGRAMMING BASED ON LEAST SQUARE METHOD 被引量:3
5
作者 YANG Fengmei LI Meng +1 位作者 HUANG Anqiang LI Jian 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期117-129,共13页
Although time series are frequently nonlinear in reality, people tend to use linear models to fit them under some assumptJLons unnecessarily in accordance with the truth, which unsurprisingly leads to unsatisfactory p... Although time series are frequently nonlinear in reality, people tend to use linear models to fit them under some assumptJLons unnecessarily in accordance with the truth, which unsurprisingly leads to unsatisfactory performance. This paper proposes a forecast method: Genetic programming based on least square method (GP-LSM). Inheriting the advantages of genetic algorithm (GA), without relying on the particular distribution of the data, this method can improve the prediction accuracy because of its ability of fitting nonlinear models, and raise the convergence speed benefitting from the least square method (LSM). In order to verify the vMidity of this method, the authors compare this method with seasonal auto regression integrated moving average (SARIMA) and back propagation artificial neural networks (BP-ANN). The results of empirical analysis show that forecast accuracy and direction prediction accuracy of GP-LSM are obviously better than those of the others. 展开更多
关键词 FORECAST genetic programming least square method time series.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部