In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were review...In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were reviewed in the paper. Aiming at the high difficulty semi-controlled splitting problem, the general nonlinear multi-objectives optimization mathematical model with constraints was established based on the theory of mine ventilation networks. A new algorithm, which combined the improved differential evaluation and the critical path method (CPM) based on the multivariable separate solution strategy, was put forward to search for the global optimal solution more efficiently. In each step of evolution, the feasible solutions of air quantity distribution are firstly produced by the improved differential evolu- tion algorithm, and then the optimal solutions of regulator pressure drop are obtained by the CPM. Through finite steps iterations, the optimal solution can be given. In this new algorithm, the population of feasible solutions were sorted and grouped for enhancing the global search ability and the individuals in general group were randomly initialized for keeping diversity. Meanwhile, the individual neighbor- hood in the fine group which may be closely to the optimal solutions were searched locally and slightly for achieving a balance between global searching and local searching, thus improving the convergence rate. The computer program was developed based on this method. Finally, the two ventilation networks with single-fan and multi-fans were solved. The results show that this algorithm has advantages of high effectiveness, fast convergence, good robustness and flexibility. This computer program could be used to solve lar^e-scale ~eneralized ventilation networks o^timization problem in the future.展开更多
This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is ...This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is approximated by BFGS updates.The new method assures global convergence without using a merit function.By Lagrangian function in the filter and nonmonotone scheme,the authors prove that the method can overcome Maratos effect without using second order correction step so that the locally superlinear convergence is achieved.The primary numerical experiments are reported to show effectiveness of the proposed algorithm.展开更多
The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient...The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.展开更多
This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has mor...This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has more flexibility for the acceptance of the trial step and requires lesscomputational costs compared with the monotone one.The global and local convergence of the proposedmethod are given under some reasonable conditions.Further,two-step Q-superlinear convergence rateis established by introducing second order correction step.The numerical experiments are reported toshow the effectiveness of the proposed algorithm.展开更多
文摘目的:探讨精神分裂症患者返回抑制及认知功能的受损害状况。方法将11例精神分裂症患者设为患者组,10例健康志愿者设为对照组,采用北京大学何淑嫦老师提供的 EXP_E‐motion‐detetion‐face2‐Square程序进行测试分析。结果患者组线索开始呈现到靶子的时间间隔在880 m s时,线索化位置对刺激的反应时间显著滞后于非线索化位置( P<0.01);对照组在不同线索开始呈现到靶子的时间间隔水平,所有线索化位置对刺激的反应时间均显著滞后于非线索化位置的反应时间(P<0.01)。患者组和对照组在不同线索开始呈现到靶子的时间间隔水平的不同线索化内容靶刺激的反应时间比较差异均无显著性(P>0.05)。结论精神分裂症患者存在返回抑制,且出现的时间滞后于健康人。
基金financially supported by the National Natural Science Foundation of China (No. 51134023)
文摘In mine ventilation networks, the reasonable airflow distribution is very important for the production safety and economy. Three basic problems of the natural, full-controlled and semi-controlled splitting were reviewed in the paper. Aiming at the high difficulty semi-controlled splitting problem, the general nonlinear multi-objectives optimization mathematical model with constraints was established based on the theory of mine ventilation networks. A new algorithm, which combined the improved differential evaluation and the critical path method (CPM) based on the multivariable separate solution strategy, was put forward to search for the global optimal solution more efficiently. In each step of evolution, the feasible solutions of air quantity distribution are firstly produced by the improved differential evolu- tion algorithm, and then the optimal solutions of regulator pressure drop are obtained by the CPM. Through finite steps iterations, the optimal solution can be given. In this new algorithm, the population of feasible solutions were sorted and grouped for enhancing the global search ability and the individuals in general group were randomly initialized for keeping diversity. Meanwhile, the individual neighbor- hood in the fine group which may be closely to the optimal solutions were searched locally and slightly for achieving a balance between global searching and local searching, thus improving the convergence rate. The computer program was developed based on this method. Finally, the two ventilation networks with single-fan and multi-fans were solved. The results show that this algorithm has advantages of high effectiveness, fast convergence, good robustness and flexibility. This computer program could be used to solve lar^e-scale ~eneralized ventilation networks o^timization problem in the future.
基金supported by the National Science Foundation of China under Grant No.10871130the Ph.D Foundation under Grant No.20093127110005+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.S30405the Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ174
文摘This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is approximated by BFGS updates.The new method assures global convergence without using a merit function.By Lagrangian function in the filter and nonmonotone scheme,the authors prove that the method can overcome Maratos effect without using second order correction step so that the locally superlinear convergence is achieved.The primary numerical experiments are reported to show effectiveness of the proposed algorithm.
基金supported by National Natural Science Foundation of China (Grant Nos. 81173633, 11401038 and 11331012)the Chinese Academy of Sciences Grant (Grant No. kjcx-yw-s7-03)+2 种基金National Natural Science Foundation of China for Distinguished Young Scientists (Grant No. 11125107)the Key Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2015CB856000)the Fundamental Research Funds for the Central Universities (Grant No. 2014RC0904)
文摘The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.
基金supported by the National Science Foundation of China under Grant No. 10871130the Ph.D. Foundation under Grant No. 20093127110005+1 种基金the Shanghai Leading Academic Discipline Project under Grant No. S30405the Shanghai Finance Budget Project under Grant Nos. 1139IA0013 and 1130IA15
文摘This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has more flexibility for the acceptance of the trial step and requires lesscomputational costs compared with the monotone one.The global and local convergence of the proposedmethod are given under some reasonable conditions.Further,two-step Q-superlinear convergence rateis established by introducing second order correction step.The numerical experiments are reported toshow the effectiveness of the proposed algorithm.