A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the...A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the flow field was recorded by the high-speed Schlieren technique.The shock train structure was mostly asymmetrical during self-excited oscillation,regardless of its oscillation mode.We found that the pressure discontinuity caused by background waves was responsible for the asymmetry.On the wall where the pressure at the leading edge of the shock train was lower,a large separation region formed and the shock train deflected toward to the other wall.The oscillation mode of the shock train was related to the change of wall pressure in the oscillation range of its leading edge.The oscillation range and oscillation intensity of the shock train leading edge were affected by the wall pressure gradient induced by background waves.When located in a negative pressure gradient region,the oscillation of the leading edge strengthened;when located in a positive pressure gradient region,the oscillation weakened.To find out the cause of self-excited oscillation,correlation and phase analyses were performed.The results indicated that the instability of the separation region induced by the leading shock was the source of perturbation that caused self-excited oscillation,regardless of the oscillation mode of the shock train.展开更多
A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the roto...A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the rotor and the airframe,the domain of flowfield is divided into two overset subzones,namely,a rotational subzone containing the blades and a stationary subzone containing the airframe.The overset part of two subzones is used to convect the flow variables of the two zones.The Taylor series expansion is used to obtain a second-order spatial accuracy,and dual-time stepping is adopted to improve the solution accuracy.Mesh deformation from the blade motion in forward flight is treated by using a spring analogy.Validation is made by numerically simulating the flows around a wind tunnel configuration and comparing the predicted time-averaged and instantaneous inflow and airframe surface pressure distributions with the experimental data.It shows that the present method is efficient and robust for the prediction of complicated unsteady rotor-airframe aerodynamic interaction phenomena.展开更多
The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solit...The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solitons are studied based on the reductive perturbation technique.It is shown that the evolution of DA solitons is governed by a spherical Kadomtsev-Petviashvili (sKP) equation and then the impact of suprathermality on the spatial structure as well as the nature of DA soliton is studied.It seems that the properties of DA solitons in nonplanar geometry are quite different from that of the planar solitons.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11972139 and 51676204)。
文摘A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the flow field was recorded by the high-speed Schlieren technique.The shock train structure was mostly asymmetrical during self-excited oscillation,regardless of its oscillation mode.We found that the pressure discontinuity caused by background waves was responsible for the asymmetry.On the wall where the pressure at the leading edge of the shock train was lower,a large separation region formed and the shock train deflected toward to the other wall.The oscillation mode of the shock train was related to the change of wall pressure in the oscillation range of its leading edge.The oscillation range and oscillation intensity of the shock train leading edge were affected by the wall pressure gradient induced by background waves.When located in a negative pressure gradient region,the oscillation of the leading edge strengthened;when located in a positive pressure gradient region,the oscillation weakened.To find out the cause of self-excited oscillation,correlation and phase analyses were performed.The results indicated that the instability of the separation region induced by the leading shock was the source of perturbation that caused self-excited oscillation,regardless of the oscillation mode of the shock train.
基金supported by the Basic Research Program of Northwestern Polytechnical University (Grant No. JC201219)the Postdoctoral Science Foundation of China (Grant No. 20100481368)
文摘A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the rotor and the airframe,the domain of flowfield is divided into two overset subzones,namely,a rotational subzone containing the blades and a stationary subzone containing the airframe.The overset part of two subzones is used to convect the flow variables of the two zones.The Taylor series expansion is used to obtain a second-order spatial accuracy,and dual-time stepping is adopted to improve the solution accuracy.Mesh deformation from the blade motion in forward flight is treated by using a spring analogy.Validation is made by numerically simulating the flows around a wind tunnel configuration and comparing the predicted time-averaged and instantaneous inflow and airframe surface pressure distributions with the experimental data.It shows that the present method is efficient and robust for the prediction of complicated unsteady rotor-airframe aerodynamic interaction phenomena.
文摘The nonlinear aspects of nonplanar dust acoustic (DA) solitary waves are investigated in an unmagnetized complex plasma comprising of cold dust grains,kappa-distributed ions as well as electrons.The nonplanar DA solitons are studied based on the reductive perturbation technique.It is shown that the evolution of DA solitons is governed by a spherical Kadomtsev-Petviashvili (sKP) equation and then the impact of suprathermality on the spatial structure as well as the nature of DA soliton is studied.It seems that the properties of DA solitons in nonplanar geometry are quite different from that of the planar solitons.