The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such...The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.展开更多
An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) ...An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.展开更多
In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteri...In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.展开更多
The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum mod...The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.展开更多
The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathe...The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.展开更多
In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are el...In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.展开更多
Wavefield extrapolation is critical in reverse time migration(RTM).The finite diff erence method is primarily used to achieve wavefi eld extrapolation in case of the RTM imaging of tunnels.However,complex tunnel model...Wavefield extrapolation is critical in reverse time migration(RTM).The finite diff erence method is primarily used to achieve wavefi eld extrapolation in case of the RTM imaging of tunnels.However,complex tunnel models,including those for karsts and fault fracture zones,are constructed using regular grids with straight curves,which can cause numerical dispersion and reduce the imaging accuracy.In this study,wavefi eld extrapolation was conducted for tunnel RTM using the finite element method,wherein an unstructured mesh was considered to be the body-fi tted partition in a complex model.Further,a Poynting vector calculation equation suitable for the unstructured mesh considered in the fi nite element method was established to suppress the interference owing to low-frequency noise.The tunnel space was considered during wavefi eld extrapolation to suppress the mirror artifacts based on the fl exibility of mesh generation.Finally,the infl uence of the survey layouts(one and two sidewalls)on the tunnel imaging results was investigated.The RTM results obtained for a simple tunnel model with an inclined interface demonstrate that the method based on unstructured meshes can effectively suppress the low-frequency noise and mirror artifacts,obtaining clear imaging results.Furthermore,the two-sidewall tunnel survey layout can be used to accurately obtain the real position of the inclined interface ahead of the tunnel face.The complex tunnel numerical modeling and actual data migration results denote the eff ectiveness of the fi nite element method in which an unstructured mesh is used.展开更多
Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal wi...Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor a was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.展开更多
In order to evaluate the influence of the seal structure on door dosing force, nonlinear finite dement methed is introduced to analyze compression deformation of a door seal for SANTANA (name of the car made by Shang...In order to evaluate the influence of the seal structure on door dosing force, nonlinear finite dement methed is introduced to analyze compression deformation of a door seal for SANTANA (name of the car made by Shanghai Volkswagen Co. Ltd). MSC. Marc software is used to analyze the large deformation of the seal and the compression test is done to prove the computational results. The results show that the compression loads of the door seal are larger than the standard value of Shanghai Volkswagen Co. Ltd and the seal structure needs to be optimized. There are consistent relationships between calculating results and experimental results and the simulation method is effective.展开更多
Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in...Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis,three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system,dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane,the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.展开更多
A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for ...A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for thickness distribution and structure shape to reduce overall tensile stress, deflection and reinforcements. The finite element analysis using Sofistik software shows that a distributed concrete thickness reduces shell stresses, deflections and reinforcements. A geometrically non-linear analysis of these structures with and without imperfections was also performed. To take into account the possible plastification of the material an analysis with non-linear material was performed simultaneously with the geometrically non-linear analysis. This helps in developing an understanding of the structural behaviour and helps to identify all potential failure causes using failure analysis.展开更多
Inflatable membrane antennas have been extensively applied in space missions;however,the simulation methods are not perfect,and many simulation methods still have many difficulties in accuracy,efficiency,and stability...Inflatable membrane antennas have been extensively applied in space missions;however,the simulation methods are not perfect,and many simulation methods still have many difficulties in accuracy,efficiency,and stability.Therefore,the extended position-based dynamics(XPBD)method is employed and improved for the simulation of folded inflatable structures in this paper.To overcome the problem that the original XPBD method with only geometric constraints does not contain any mechanical information and cannot reflect the mechanical characteristics of the structure,we improve the XPBD method by introducing the strain energy constraint.Due to the complicated nonlinear characteristics of the membrane structures,the results with the traditional finite element method(Abaqus)cannot converge,while the tension field theory(TFT)can,but some pretreatments are needed.Compared with them,the method in this paper is simple and has better stability to accurately predict the displacement,stress,and wrinkle region of the membrane structure.In addition,the present method is also compared with the experiment in the reference to verify the feasibility of the folded tube simulation.Finally,the present method is applied to simulate inflatable membrane antennas and analyze the deployable driving force and deployable process sequence of each component.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41204055,41164003,and 41104074)Opening Project(No.SMIL-2014-06) of Hubei Subsurface Multi-scale Imaging Lab(SMIL),China University of Geosciences(Wuhan)
文摘The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.
基金Project(2007CB714202) supported by the National Key Basic Research Program of ChinaProject(SLDRCE10-B-07) supported by theMinistry of Science and Technology of China
文摘An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos..42030806,41774125,41804098,41904104)the Key National Research Project of China(Grant No.2018YFC0603300).
文摘In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.
基金Projects(50935002, 11002039) supported by the National Natural Science Foundation of ChinaProject(HIT.KLOF.2009062) supported by Key Laboratory Opening Funding of Aerospace Mechanism and Control Technology,Chinasupport by "111 Project" (Grant No.B07018)
文摘The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.
基金Projects(51409167,51139001,51179066)supported by the National Natural Science Foundation of ChinaProjects(201401022,201501036)supported by the Ministry of Water Resources Public Welfare Industry Research Special Fund,ChinaProjects(GG201532,GG201546)supported by the Scientific and Technological Research for Water Conservancy,Henan Province,China
文摘The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.
文摘In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.
基金supported by the National Natural Science Foundation of China (Nos. 41804145, 41704146)Natural Science Foundation of Hebei Province (No. D2018210168)Project of Hebei Province Higher Educational Science and Technology Program (No.QN2019185)。
文摘Wavefield extrapolation is critical in reverse time migration(RTM).The finite diff erence method is primarily used to achieve wavefi eld extrapolation in case of the RTM imaging of tunnels.However,complex tunnel models,including those for karsts and fault fracture zones,are constructed using regular grids with straight curves,which can cause numerical dispersion and reduce the imaging accuracy.In this study,wavefi eld extrapolation was conducted for tunnel RTM using the finite element method,wherein an unstructured mesh was considered to be the body-fi tted partition in a complex model.Further,a Poynting vector calculation equation suitable for the unstructured mesh considered in the fi nite element method was established to suppress the interference owing to low-frequency noise.The tunnel space was considered during wavefi eld extrapolation to suppress the mirror artifacts based on the fl exibility of mesh generation.Finally,the infl uence of the survey layouts(one and two sidewalls)on the tunnel imaging results was investigated.The RTM results obtained for a simple tunnel model with an inclined interface demonstrate that the method based on unstructured meshes can effectively suppress the low-frequency noise and mirror artifacts,obtaining clear imaging results.Furthermore,the two-sidewall tunnel survey layout can be used to accurately obtain the real position of the inclined interface ahead of the tunnel face.The complex tunnel numerical modeling and actual data migration results denote the eff ectiveness of the fi nite element method in which an unstructured mesh is used.
基金Project(2012CB026200)supported by the National Basic Research Program of ChinaProjects(50978055,50878048)supported by the National Natural Science Foundation of China
文摘Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor a was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical.
文摘In order to evaluate the influence of the seal structure on door dosing force, nonlinear finite dement methed is introduced to analyze compression deformation of a door seal for SANTANA (name of the car made by Shanghai Volkswagen Co. Ltd). MSC. Marc software is used to analyze the large deformation of the seal and the compression test is done to prove the computational results. The results show that the compression loads of the door seal are larger than the standard value of Shanghai Volkswagen Co. Ltd and the seal structure needs to be optimized. There are consistent relationships between calculating results and experimental results and the simulation method is effective.
文摘Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis,three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system,dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane,the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.
文摘A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for thickness distribution and structure shape to reduce overall tensile stress, deflection and reinforcements. The finite element analysis using Sofistik software shows that a distributed concrete thickness reduces shell stresses, deflections and reinforcements. A geometrically non-linear analysis of these structures with and without imperfections was also performed. To take into account the possible plastification of the material an analysis with non-linear material was performed simultaneously with the geometrically non-linear analysis. This helps in developing an understanding of the structural behaviour and helps to identify all potential failure causes using failure analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.11922203 and 11772074).
文摘Inflatable membrane antennas have been extensively applied in space missions;however,the simulation methods are not perfect,and many simulation methods still have many difficulties in accuracy,efficiency,and stability.Therefore,the extended position-based dynamics(XPBD)method is employed and improved for the simulation of folded inflatable structures in this paper.To overcome the problem that the original XPBD method with only geometric constraints does not contain any mechanical information and cannot reflect the mechanical characteristics of the structure,we improve the XPBD method by introducing the strain energy constraint.Due to the complicated nonlinear characteristics of the membrane structures,the results with the traditional finite element method(Abaqus)cannot converge,while the tension field theory(TFT)can,but some pretreatments are needed.Compared with them,the method in this paper is simple and has better stability to accurately predict the displacement,stress,and wrinkle region of the membrane structure.In addition,the present method is also compared with the experiment in the reference to verify the feasibility of the folded tube simulation.Finally,the present method is applied to simulate inflatable membrane antennas and analyze the deployable driving force and deployable process sequence of each component.