期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
末次刈割时间对3种紫花苜蓿越冬前后根颈非结构碳氮含量的影响
1
作者 杨秀芳 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2023年第1期9-16,共8页
【目的】研究科尔沁沙地3种2年生紫花苜蓿品种越冬前后根颈非结构碳氮含量对末次刈割时间的响应。【方法】选择3种2年生紫花苜蓿(WL168HQ、WL298HQ、佳盛),在不同时间(2020年8月11日(C1)、8月26日(C2)、9月13日(C3)、9月27日(C4)、10月1... 【目的】研究科尔沁沙地3种2年生紫花苜蓿品种越冬前后根颈非结构碳氮含量对末次刈割时间的响应。【方法】选择3种2年生紫花苜蓿(WL168HQ、WL298HQ、佳盛),在不同时间(2020年8月11日(C1)、8月26日(C2)、9月13日(C3)、9月27日(C4)、10月13日(C5))进行末次刈割,于2020年10月15日(T1)、11月10日(T2)、2021年3月10日(T3)、4月10日(T4)、5月10日(T5)挖根采样,测定3种紫花苜蓿越冬前(T1、T2)和越冬后(T3、T4、T5)根颈中的非结构碳氮含量。【结果】越冬前随时间推移,3种紫花苜蓿不同末次刈割处理根颈淀粉含量均呈现降低趋势,可溶性糖含量均呈现升高趋势;越冬前11月份和越冬后3月份,WL298HQ品种C2刈割处理根颈淀粉和可溶性糖含量显著高于其他末次刈割处理(P<0.05);越冬前11月份和越冬后4月份,佳盛品种C2刈割处理、WL168HQ品种C3处理根颈淀粉和可溶性糖含量显著高于其他末次刈割处理(P<0.05)。从秋冬到翌年返青,根颈游离氨基酸含量呈先上升后下降的趋势;在晚秋时节(T1),3种紫花苜蓿均以C5刈割处理游离氨基酸含量最高;次年3月份(T3)和5月份(T5),3种紫花苜蓿各末次刈割处理根颈游离氨基酸含量变化无规律性。晚秋时节(T1),WL168HQ和佳盛的C4刈割处理可溶性蛋白含量显著低于其他末次刈割处理(P<0.05);晚秋时节(T1)和返青萌动期(T4),WL298HQ的C4和C3刈割处理可溶性蛋白含量分别显著低于其他3个末次刈割处理(P<0.05)。在4月份返青萌动期,WL298HQ所有刈割处理根颈淀粉和可溶性糖含量均低于WL168HQ和佳盛;在越冬前的10和11月份,WL168HQ所有刈割处理根颈可溶性蛋白含量均高于WL298HQ和佳盛。【结论】越冬前的10月和11月,抗寒性强的苜蓿品种根颈可溶性蛋白含量高于抗寒性弱的品种;越冬后的4月份,抗寒性强的苜蓿品种根颈淀粉和可溶性糖含量高于抗寒性弱的品种。抗寒性越强的苜蓿品种,较晚进行末次刈割对其抗寒能力的影响越小。 展开更多
关键词 紫花苜蓿 刈割时间 非结构碳氮 抗寒性
下载PDF
施氮量对沙地羊草叶片非结构碳氮的影响 被引量:1
2
作者 丛百明 张玉霞 +3 位作者 王显国 朱爱民 田永雷 张庆昕 《草原与草坪》 CAS CSCD 2019年第3期50-55,共6页
在人工建植的沙地羊草草地设不同水平N肥(0、100、200、300、400kg/hm^2)处理,分别用N0、N1、N2、N3、N4表示,研究不同N肥水平对沙地羊草叶片非结构碳氮的影响。结果表明:施氮可增加羊草叶片可溶性糖含量;随氮肥施入水平的增加,沙地羊... 在人工建植的沙地羊草草地设不同水平N肥(0、100、200、300、400kg/hm^2)处理,分别用N0、N1、N2、N3、N4表示,研究不同N肥水平对沙地羊草叶片非结构碳氮的影响。结果表明:施氮可增加羊草叶片可溶性糖含量;随氮肥施入水平的增加,沙地羊草上部叶片的淀粉含量呈降低的变化趋势,第2茬沙地羊草下部叶片的淀粉含量呈先增加后降低的趋势;施N可显著增加沙地羊草叶片的可溶性蛋白含量(P<0.05),亦可增加第1茬羊草叶片的游离氨基酸含量;沙地羊草叶片C/N均随施氮的增加呈先降低后增加的变化趋势,上部叶片在N1水平下的C/N最小,试验得出N1(100kg/hm^2)水平为该地区最佳施氮量。 展开更多
关键词 沙地 羊草 非结构碳氮 C/N
下载PDF
Study on the Changes of Non-structural Carbohydrates and Nitrogen Contents of Quercus aquifolioides Scrub along Different Elevation Gradient 被引量:2
3
作者 黄亚洲 吴杰 +3 位作者 孟玉山 吕俊 王三根 朱万泽 《Agricultural Science & Technology》 CAS 2011年第4期576-580,共5页
[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the... [Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system. 展开更多
关键词 Quercus aquifolioides Total nitrogen NON-STRUCTURAL Carbohydrates ELEVATION
下载PDF
Effects of leaf age,elevation and light conditions on photosynthesis and leaf traits in saplings of two evergreen conifers,Abies veitchii and A.mariesii 被引量:1
4
作者 Rina Suzuki Koichi Takahashi 《Journal of Plant Ecology》 SCIE CSCD 2020年第4期460-469,共10页
Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous ... Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous species,Abies veitchii and Abies mariesii,dominate at low and high elevations,respectively,in the subalpine zone,central Japan.The aim of this study is to examine the effects of leaf age,elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.Methods We here examined effects of leaf age,elevation and light conditions on photosynthesis,and leaf traits in A.veitchii and A.mariesii.Saplings of the two conifers were sampled in the understory and canopy gaps at their lower(1600 m)and upper(2300 m)distribution limits.Important Findings The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits.The maximum photosynthetic rate of A.veitchii is correlated negatively with leaf mass per area(LMA)and non-structural carbohydrate(NSC)concentration.LMA increased at high elevations in the two species,whereas NSC concentrations increased only in A.veitchii.Therefore,the maximum photosynthetic rate of A.veitchii decreased at high elevations.Furthermore,maximum photosynthetic rates correlate positively with nitrogen concentration in both species.In the understory,leaf nitrogen concentrations decreased and increased in A.veitchii and A.mariesii,respectively.LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A.mariesii,suggesting it has a higher light-capture efficiency in dark conditions than does A.veitchii.This study concluded that A.mariesii has more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A.veitchii,allowing A.mariesii to survive in the understory and to dominate at high elevations. 展开更多
关键词 leaf chlorophyll leaf mass per area leaf nitrogen non-structural carbohydrate concentration stable carbon–isotope ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部