We present a comprehensive view and details of calculations on Aharonov-Anandan phase for the charged particles in the external electric and magnetic fields for a nonadiabatic process.We derive,with consideration of a...We present a comprehensive view and details of calculations on Aharonov-Anandan phase for the charged particles in the external electric and magnetic fields for a nonadiabatic process.We derive,with consideration of a spin-orbit interaction and Zeemann Splitting,the persistent currents as a response to an Aharonov-Casher topological interference effect in one-dimensional mesoscopic ring.We also establish a connection to Berry adiabatic phase with deduced dynamical-nature dependence in the nonadiabatic process.The second quantization representation has also been employed in exhibition of persistent currents in the many-body case.展开更多
Inspired by the branching corrected surface hopping(BCSH)method[J.Xu and L.Wang,J.Chem.Phys.150,164101(2019)],we present two new decoherence time formulas for trajectory surface hopping.Both the proposed linear and ex...Inspired by the branching corrected surface hopping(BCSH)method[J.Xu and L.Wang,J.Chem.Phys.150,164101(2019)],we present two new decoherence time formulas for trajectory surface hopping.Both the proposed linear and exponential formulas characterize the decoherence time as functions of the energy difference between adiabatic states and correctly capture the decoherence effect due to wave packet reflection as predicted by BCSH.The relevant parameters are trained in a series of 200 diverse models with different initial nuclear momenta,and the exact quantum solutions are utilized as references.As demonstrated in the three standard Tully models,the two new approaches exhibit significantly higher reliability than the widely used counterpart algorithm while holding the appealing efficiency,thus promising for nonadiabatic dynamics simulations of general systems.展开更多
We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state ...We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.展开更多
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the definitions and relations between these three non-integrable phases.
To investigate the impacts of uncertain parameters on simulated Pacific Walker circulation (PWC), a large number of perturbed parameter simulations are conducted using GAMIL2 (the Grid-point Atmospheric Model of IA...To investigate the impacts of uncertain parameters on simulated Pacific Walker circulation (PWC), a large number of perturbed parameter simulations are conducted using GAMIL2 (the Grid-point Atmospheric Model of IAP/LASG, version 2), and three different PWC indices are selected.The results show that the influences of some parameters on PWC are dependent on the selected index - a finding supported by the inconsistent responses of different indexes to these parameters. Among the nine parameters, the RH threshold for deep convection (RHCRIT) is the most sensitive in simulating PWC. Increased RHCRIT weakens deep convective heating and stratiform cooling, and strengthens shallow convective heating. Further analysis reveals that uncertain parameters affect the simulated PWC through changing the diabatic heating and vertical motion.展开更多
The interaction between the low-frequency atmospheric oscillation(Madden-Julian Oscillation,MJO) and the diabatic heating over the Qinghai-Xizang Plateau(QXP) from March to June is analyzed.The results show that there...The interaction between the low-frequency atmospheric oscillation(Madden-Julian Oscillation,MJO) and the diabatic heating over the Qinghai-Xizang Plateau(QXP) from March to June is analyzed.The results show that there are respectively two and one wave trains around the QXP during the onset of the South China Sea monsoon in strong and weak monsoon years.The locations and strength of the wave train propagation differ between the strong and weak monsoon years.Because diabatic heating of the QXP prevents the low-frequency oscillation,the wave train of interaction between the diabatic heating and the zonal wind MJO propagates along the west and east of the QXP in the strong monsoon years.The distribution of the wave train interaction between the diabatic heating and the zonal wind MJO traverses the QXP and coincides with the location of the southern and northern upper-level jet streams,showing that they are remarkably correlated.An interesting and notable phenomenon is that the interaction between diabatic heating and the zonal wind MJO over the QXP suddenly disappears during the monsoon onset in weak monsoon years.展开更多
We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the par...We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the parameters, while the non-adiabatic approximate Berry phase is parameter-dependent, proportional to the average photon number m, and tends to be constant with the increasing detuning. In the ease of exact n-photon resonance and an integer ratio of m/n, the two results coincide with each other, otherwise there appears an additional non-trivial phase factor.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.90103077 and 10274069Natural Science Foundation of Guangdong Province of China under Grant No.011151
文摘We present a comprehensive view and details of calculations on Aharonov-Anandan phase for the charged particles in the external electric and magnetic fields for a nonadiabatic process.We derive,with consideration of a spin-orbit interaction and Zeemann Splitting,the persistent currents as a response to an Aharonov-Casher topological interference effect in one-dimensional mesoscopic ring.We also establish a connection to Berry adiabatic phase with deduced dynamical-nature dependence in the nonadiabatic process.The second quantization representation has also been employed in exhibition of persistent currents in the many-body case.
基金supported by the National Natural Science Foundation of China(No.21922305,No.21873080,No.21703202)。
文摘Inspired by the branching corrected surface hopping(BCSH)method[J.Xu and L.Wang,J.Chem.Phys.150,164101(2019)],we present two new decoherence time formulas for trajectory surface hopping.Both the proposed linear and exponential formulas characterize the decoherence time as functions of the energy difference between adiabatic states and correctly capture the decoherence effect due to wave packet reflection as predicted by BCSH.The relevant parameters are trained in a series of 200 diverse models with different initial nuclear momenta,and the exact quantum solutions are utilized as references.As demonstrated in the three standard Tully models,the two new approaches exhibit significantly higher reliability than the widely used counterpart algorithm while holding the appealing efficiency,thus promising for nonadiabatic dynamics simulations of general systems.
文摘We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.
文摘There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the definitions and relations between these three non-integrable phases.
基金jointly funded by the National Key Research Project[grant number 2016YFB0200805]the National Natural Science Foundation of China[grant number 41622503],[grant number 41475043],[grant number 41405073],and [grant number91530323]+1 种基金Open Fund of Key Laboratory of Data Analysis and Applications,SOA[grant number LDAA-2014-03]the National Key Basic Research Program of China[grant number2015CB954101]
文摘To investigate the impacts of uncertain parameters on simulated Pacific Walker circulation (PWC), a large number of perturbed parameter simulations are conducted using GAMIL2 (the Grid-point Atmospheric Model of IAP/LASG, version 2), and three different PWC indices are selected.The results show that the influences of some parameters on PWC are dependent on the selected index - a finding supported by the inconsistent responses of different indexes to these parameters. Among the nine parameters, the RH threshold for deep convection (RHCRIT) is the most sensitive in simulating PWC. Increased RHCRIT weakens deep convective heating and stratiform cooling, and strengthens shallow convective heating. Further analysis reveals that uncertain parameters affect the simulated PWC through changing the diabatic heating and vertical motion.
基金supported by National Basic Research Program of China (Grant No. 2007CB411506)National Natural Science Foundation of China (Grant No. 40875050)
文摘The interaction between the low-frequency atmospheric oscillation(Madden-Julian Oscillation,MJO) and the diabatic heating over the Qinghai-Xizang Plateau(QXP) from March to June is analyzed.The results show that there are respectively two and one wave trains around the QXP during the onset of the South China Sea monsoon in strong and weak monsoon years.The locations and strength of the wave train propagation differ between the strong and weak monsoon years.Because diabatic heating of the QXP prevents the low-frequency oscillation,the wave train of interaction between the diabatic heating and the zonal wind MJO propagates along the west and east of the QXP in the strong monsoon years.The distribution of the wave train interaction between the diabatic heating and the zonal wind MJO traverses the QXP and coincides with the location of the southern and northern upper-level jet streams,showing that they are remarkably correlated.An interesting and notable phenomenon is that the interaction between diabatic heating and the zonal wind MJO over the QXP suddenly disappears during the monsoon onset in weak monsoon years.
基金Supported by the National Natural Science Foundation of China under Grants Nos.11075099,11047167,and 11105087
文摘We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the parameters, while the non-adiabatic approximate Berry phase is parameter-dependent, proportional to the average photon number m, and tends to be constant with the increasing detuning. In the ease of exact n-photon resonance and an integer ratio of m/n, the two results coincide with each other, otherwise there appears an additional non-trivial phase factor.