Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed beca...Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed because of various quantum no-go theorems. In this paper, to avoid these theorems in quantum multiple-source networks, we present a photonic strategy by exploring quantum transferring approaches assisted by the weak cross-Kerr nonlinearity. The internal node may nearly deterministically fuse all incoming photons into a single photon with multiple modes. The fused single photon may be transmitted using twophotonic hyperentanglement as a quantum resource. The quantum splitting as the inverse operation of the quantum fusion allows forwarding quantum states under the quantum no-cloning theorem. Furthermore, quantum addressing schemes are presented to complete the quantum transmissions on multiple-source networks going beyond the classical network broadcasts or quantum n-pair transmissions in terms of their reduced forms.展开更多
In this paper, epidemic spread with the staged progression model on homogeneous and heterogeneous networks is studied. First, the epidemic threshold of the simple staged progression model is given. Then the staged pro...In this paper, epidemic spread with the staged progression model on homogeneous and heterogeneous networks is studied. First, the epidemic threshold of the simple staged progression model is given. Then the staged progression model with birth and death is also considered. The case where infectivity is a nonlinear function of the nodes' degree is discussed, too. Finally, the analytical results are verified by numerical simulations.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 61772437, 61702427, and 61671087)the Natural Science Foundation of Shandong Province (Grant No. ZR2015FL024)+2 种基金Sichuan Youth Science and Technique Foundation (Grant No. 2017JQ0048)Fundamental Research Funds for the Central Universities (Grant No. 2682014CX095)Chuying Fellowship
文摘Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed because of various quantum no-go theorems. In this paper, to avoid these theorems in quantum multiple-source networks, we present a photonic strategy by exploring quantum transferring approaches assisted by the weak cross-Kerr nonlinearity. The internal node may nearly deterministically fuse all incoming photons into a single photon with multiple modes. The fused single photon may be transmitted using twophotonic hyperentanglement as a quantum resource. The quantum splitting as the inverse operation of the quantum fusion allows forwarding quantum states under the quantum no-cloning theorem. Furthermore, quantum addressing schemes are presented to complete the quantum transmissions on multiple-source networks going beyond the classical network broadcasts or quantum n-pair transmissions in terms of their reduced forms.
基金supported by Hong Kong Polytechnic University Grant via a Council Competitive Earmarked Research Grant(CERG) under Grant No.PolyU 5279//08Ethe National Natural Science Foundation of China under Grant Nos.11005001 and 11072136+1 种基金the 211 Project of Anhui University under Grant No.2009QN003A,KJTD002Bsupported by Shanghai Leading Academic Discipline Project under Grant No.S30104
文摘In this paper, epidemic spread with the staged progression model on homogeneous and heterogeneous networks is studied. First, the epidemic threshold of the simple staged progression model is given. Then the staged progression model with birth and death is also considered. The case where infectivity is a nonlinear function of the nodes' degree is discussed, too. Finally, the analytical results are verified by numerical simulations.