Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI...Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.展开更多
Objective To research the direct electrophysiological evidence of discomplete spinal cord injury (SCI) and the effect of 4-aminopyridine on it.Methods Motor evoked potentials (MEPs), both spinal cord recorded MEPs (...Objective To research the direct electrophysiological evidence of discomplete spinal cord injury (SCI) and the effect of 4-aminopyridine on it.Methods Motor evoked potentials (MEPs), both spinal cord recorded MEPs (scMEPs) and extracellularly recorded MEPs (exMEPs) were recorded and characterized on a T13 epidural electrode (scMEPs) and an extracellular microelectrode (exMEPs) for 10 normal rats and 40 rats with lesions of various severity (sham, 35?g*cm force (gcf), 70?gcf, 100?gcf impact injury) at the T8-T9 cord using the Allen's drop model. The incline plane and Tarlov techniques were used to assess clinical neurological function. Results MEPs in the normal rats were elicited by applying transcortical suprathreshold stimulation consisting of 3-4 early negative peaks (N1, N2, N3 and N4) followed by several late waves. The N1 and N2 peaks were largest in the anterior and ventrolateral funiculus, respectively, which was indicative of extrapyramidal pathways. The 100?gcf impact injuries and the cord transection abolished the MEP distal to the lesion, whereas the 35?gcf injuries resulted in a latency shift and amplitude decrement of the MEP peaks. Eighteen of the 20 rats with 70?gcf injuries showed clinical paraplegia. Among them, 7 rats had neurophysiological evidence of residual conduction pathways through the lesioned cord segment, such as the presence of N1 and N2 peaks in the scMEPs or exMEPs. After 4-aminopyridine (4-AP) administrations (1?mg/kg), the amplitude of the spared exMEP increased significantly and spread more widely. Conclusions MEPs evoked by transcortical stimulation travel mostly in the extrapyramidal tract. MEP monitoring could provide an excellent method of detecting the functional integrity of the motor tracts after SCI, and could even detect spared motor fibers after discomplete SCI. Furthermore, the use of 4-AP or other K+ channel blocking agents may be a potential treatment for patients with chronic moderate to severe SCI.展开更多
文摘Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.
基金thegrantsfromtheAdvanceDepartment FoundationfromtheMedicalMinistryofShanghai China! (No 1995 Ⅲ 0 0 8)
文摘Objective To research the direct electrophysiological evidence of discomplete spinal cord injury (SCI) and the effect of 4-aminopyridine on it.Methods Motor evoked potentials (MEPs), both spinal cord recorded MEPs (scMEPs) and extracellularly recorded MEPs (exMEPs) were recorded and characterized on a T13 epidural electrode (scMEPs) and an extracellular microelectrode (exMEPs) for 10 normal rats and 40 rats with lesions of various severity (sham, 35?g*cm force (gcf), 70?gcf, 100?gcf impact injury) at the T8-T9 cord using the Allen's drop model. The incline plane and Tarlov techniques were used to assess clinical neurological function. Results MEPs in the normal rats were elicited by applying transcortical suprathreshold stimulation consisting of 3-4 early negative peaks (N1, N2, N3 and N4) followed by several late waves. The N1 and N2 peaks were largest in the anterior and ventrolateral funiculus, respectively, which was indicative of extrapyramidal pathways. The 100?gcf impact injuries and the cord transection abolished the MEP distal to the lesion, whereas the 35?gcf injuries resulted in a latency shift and amplitude decrement of the MEP peaks. Eighteen of the 20 rats with 70?gcf injuries showed clinical paraplegia. Among them, 7 rats had neurophysiological evidence of residual conduction pathways through the lesioned cord segment, such as the presence of N1 and N2 peaks in the scMEPs or exMEPs. After 4-aminopyridine (4-AP) administrations (1?mg/kg), the amplitude of the spared exMEP increased significantly and spread more widely. Conclusions MEPs evoked by transcortical stimulation travel mostly in the extrapyramidal tract. MEP monitoring could provide an excellent method of detecting the functional integrity of the motor tracts after SCI, and could even detect spared motor fibers after discomplete SCI. Furthermore, the use of 4-AP or other K+ channel blocking agents may be a potential treatment for patients with chronic moderate to severe SCI.