The extended tanh method is further improved by generalizing the Riccati equation and introducing its twenty seven new solutions. As its application, the (2+ 1)-dimensional Broer-Kaup equation is investigated and then...The extended tanh method is further improved by generalizing the Riccati equation and introducing its twenty seven new solutions. As its application, the (2+ 1)-dimensional Broer-Kaup equation is investigated and then its fifty four non-travelling wave solutions have been obtained. The results reported in this paper show that this method is more powerful than those, such as tanh method, extended tanh method, modified extended tanh method and Riccati equation expansion method introduced in previous literatures.展开更多
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
The improved tanh function method [Commun. Theor. Phys. (Beijing, China) 43 (2005) 585] is further improved by generalizing the ansatz solution of the considered equation. As its application, the (2+1)-dimensio...The improved tanh function method [Commun. Theor. Phys. (Beijing, China) 43 (2005) 585] is further improved by generalizing the ansatz solution of the considered equation. As its application, the (2+1)-dimensional Broer-Kaup equations are considered and abundant new exact non-travelling wave solutions are obtained.展开更多
With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a res...With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a result, their abundant new soliton-like solutions and period form solutions are found.展开更多
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbit...A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbitrariness of the manifold in Painlevé analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.展开更多
文摘The extended tanh method is further improved by generalizing the Riccati equation and introducing its twenty seven new solutions. As its application, the (2+ 1)-dimensional Broer-Kaup equation is investigated and then its fifty four non-travelling wave solutions have been obtained. The results reported in this paper show that this method is more powerful than those, such as tanh method, extended tanh method, modified extended tanh method and Riccati equation expansion method introduced in previous literatures.
文摘By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
基金*Supported by the National Natural Science Foundation of China under Grant No. 40876010, the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08, the R &: D Special Fund for Public Welfare Industry (Meteorology) under Grant No. GYHY200806010, the LASG State Key Laboratory Special Fund and the Foundation of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
文摘The improved tanh function method [Commun. Theor. Phys. (Beijing, China) 43 (2005) 585] is further improved by generalizing the ansatz solution of the considered equation. As its application, the (2+1)-dimensional Broer-Kaup equations are considered and abundant new exact non-travelling wave solutions are obtained.
基金The project supported by the National Key Basic Research Development Project Program under Grant No.G1998030600the Foundation of Liaoning Normal University
文摘With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a result, their abundant new soliton-like solutions and period form solutions are found.
文摘A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbitrariness of the manifold in Painlevé analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.