针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误...针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.展开更多
提出了三种改进的用卡尔曼滤波器消除到达时间(Time of Arrival, TOA)测量值中非视距(Non-Line ofSight, NLOS)误差的方法。这三种方法从不同角度考察 TOA 测量值中 NLOS 误差的特点,分别对卡尔曼滤波器的迭代过程进行改进,有效地消除了...提出了三种改进的用卡尔曼滤波器消除到达时间(Time of Arrival, TOA)测量值中非视距(Non-Line ofSight, NLOS)误差的方法。这三种方法从不同角度考察 TOA 测量值中 NLOS 误差的特点,分别对卡尔曼滤波器的迭代过程进行改进,有效地消除了 TOA 测量值中 NLOS 误差的随机性和正向偏差。与传统的 NLOS 误差消除算法相比,这三种方法均可获得较小的估计误差,并可实现实时处理。展开更多
为解决移动机器人在非视距(non-line of sight,NLOS)环境下定位系统误差大和稳定性差的问题,提出一种抗NLOS误差的N-CTK(NLOS Chan-Taylor-Kalman)组合算法。首先在Chan-Taylor协同算法基础上,融入卡尔曼滤波算法,提出一种CTK组合定位算...为解决移动机器人在非视距(non-line of sight,NLOS)环境下定位系统误差大和稳定性差的问题,提出一种抗NLOS误差的N-CTK(NLOS Chan-Taylor-Kalman)组合算法。首先在Chan-Taylor协同算法基础上,融入卡尔曼滤波算法,提出一种CTK组合定位算法,然后基于TDOA(time difference of arrival)测量值构建NLOS误差模型,引入NLOS误差转化因子,融合扩展卡尔曼滤波算法,并结合所提CTK组合算法,最终获得标签的估计值。实验测试表明:视距(line of sight,LOS)环境下误差为6 cm时,N-CTK组合算法相比CTK组合算法的累积分布函数提高了13.5%,NLOS环境下误差为15 cm时,N-CTK组合算法相比CTK组合算法的累积分布函数提高了55%,定位精度明显提高。展开更多
文摘针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.
文摘为解决移动机器人在非视距(non-line of sight,NLOS)环境下定位系统误差大和稳定性差的问题,提出一种抗NLOS误差的N-CTK(NLOS Chan-Taylor-Kalman)组合算法。首先在Chan-Taylor协同算法基础上,融入卡尔曼滤波算法,提出一种CTK组合定位算法,然后基于TDOA(time difference of arrival)测量值构建NLOS误差模型,引入NLOS误差转化因子,融合扩展卡尔曼滤波算法,并结合所提CTK组合算法,最终获得标签的估计值。实验测试表明:视距(line of sight,LOS)环境下误差为6 cm时,N-CTK组合算法相比CTK组合算法的累积分布函数提高了13.5%,NLOS环境下误差为15 cm时,N-CTK组合算法相比CTK组合算法的累积分布函数提高了55%,定位精度明显提高。