目的利用医疗大数据和机器学习技术相结合,探索基于临床结果的临床医师绩效评价方法。方法采用非负主成分分析法(non-negative principal component analysis,NPCA),基于非负稀疏主成分算法(non-negative sparse principal component an...目的利用医疗大数据和机器学习技术相结合,探索基于临床结果的临床医师绩效评价方法。方法采用非负主成分分析法(non-negative principal component analysis,NPCA),基于非负稀疏主成分算法(non-negative sparse principal component analysis,NSPCA)对170名治疗心血管疾病的临床医师的11个临床工作绩效指标进行综合指数拟合。同时,基于根本原因评估技术(root cause assessment techniques)构建置信区间计算每一名临床医师各指标范围。结果门诊出院诊断符合率、手术切口甲级愈合率、手术患者比例、三日确诊率、开展三级和四级手术比例、完成手术及操作数在区分临床医师工作绩效上较为显著,而术前平均住院日、30天内非计划再入院率、出院患者平均住院日、主要诊断治愈/好转、收治患者数在区分临床医师临床工作绩效上不显著。通过综合指数拟合可对所有临床医师的整体工作绩效进行排名,进一步对各具体指标的高、中、低绩效评估可针对性地揭示每一名临床医师潜在的改建维度。结论利用机器学习技术实现以医疗大数据为载体综合评价临床医师临床工作绩效,有望为更科学、客观地评价临床医师工作绩效提供重要支撑。展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
文摘目的利用医疗大数据和机器学习技术相结合,探索基于临床结果的临床医师绩效评价方法。方法采用非负主成分分析法(non-negative principal component analysis,NPCA),基于非负稀疏主成分算法(non-negative sparse principal component analysis,NSPCA)对170名治疗心血管疾病的临床医师的11个临床工作绩效指标进行综合指数拟合。同时,基于根本原因评估技术(root cause assessment techniques)构建置信区间计算每一名临床医师各指标范围。结果门诊出院诊断符合率、手术切口甲级愈合率、手术患者比例、三日确诊率、开展三级和四级手术比例、完成手术及操作数在区分临床医师工作绩效上较为显著,而术前平均住院日、30天内非计划再入院率、出院患者平均住院日、主要诊断治愈/好转、收治患者数在区分临床医师临床工作绩效上不显著。通过综合指数拟合可对所有临床医师的整体工作绩效进行排名,进一步对各具体指标的高、中、低绩效评估可针对性地揭示每一名临床医师潜在的改建维度。结论利用机器学习技术实现以医疗大数据为载体综合评价临床医师临床工作绩效,有望为更科学、客观地评价临床医师工作绩效提供重要支撑。
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.