期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
关于离散数学中一些定理证明的思考
1
作者 孙玲琍 《高师理科学刊》 2015年第12期18-21,共4页
从关系矩阵的角度对离散数学中二元关系的逆、复合、并和幂等4种运算进行研究和分析,简化了相关定理的证明.给出非负整数列可图化定理的一个等价条件,进而得到了判断非负整数列可图化的一种简便方法.
关键词 离散数学 二元关系的运算 非负整数列 度序
下载PDF
Chaos and null systems 被引量:2
2
作者 WANG HuoYun LIU Xin FU HeMan 《Science China Mathematics》 SCIE 2013年第3期607-618,共12页
A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an u... A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic. 展开更多
关键词 null system Dpq chaos topological sequence entropy
原文传递
On infinite additive complements
3
作者 FANG JinHui CHEN YongGao 《Science China Mathematics》 SCIE CSCD 2017年第10期1779-1790,共12页
Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. For a sequence T of non-negative integers, let T(x) be the numb... Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. For a sequence T of non-negative integers, let T(x) be the number of terms of T not exceeding x. In 1994, Sarkozy and Szemer′edi confirmed a conjecture of Danzer by proving that, for infinite additive complements A and B, if lim sup A(x)B(x)/x 1, then A(x)B(x)-x → +∞ as x → +∞. In this paper, it is proved that, if A and B are infinite additive complements with lim sup A(x)B(x)/x〈(√4 + 2)/7 = 1.093 …, then(A(x)B(x)-x)/min{A(x), B(x)} → +∞ as x → +∞. 展开更多
关键词 additive complements SEQUENCES counting functions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部