结合非下采样轮廓波变换(NSCT),提出了一种红外图像改进非局部均值滤波算法(Improved Non-local Means Filtering,INLMF)。该算法首先对红外噪声图像进行多尺度NSCT变换,其次分别从相似图像块自适应划分方法以及滤波权重计算方法 2个方...结合非下采样轮廓波变换(NSCT),提出了一种红外图像改进非局部均值滤波算法(Improved Non-local Means Filtering,INLMF)。该算法首先对红外噪声图像进行多尺度NSCT变换,其次分别从相似图像块自适应划分方法以及滤波权重计算方法 2个方面对经典非局部均值滤波算法进行适当改进,将改进后的非局部均值滤波算法(INLMF)应用于处理高频分解系数,然后将滤波后的高频分解系数与低频分解系数进行重构,得到去噪后的图像,最后对去噪后图像采用非负支撑域有限递归逆滤波(Non-negativity and Support Constraints Recursive Inverse Filtering,NAS-RIF)算法进行图像复原,以尽可能消除因滤波造成的图像失真。测试结果表明,本文算法滤波效果优于NLMF及其已有的改进算法。展开更多
实现对遥感噪声图像的有效复原是遥感图像处理的一项重要研究内容。在对非负支撑域有限递归逆滤波(non-negativity and support constraints recursive inverse filtering,NAS-RIF)算法深入研究的基础上,提出一种基于改进自适应NAS-RIF...实现对遥感噪声图像的有效复原是遥感图像处理的一项重要研究内容。在对非负支撑域有限递归逆滤波(non-negativity and support constraints recursive inverse filtering,NAS-RIF)算法深入研究的基础上,提出一种基于改进自适应NAS-RIF算法的遥感噪声图像复原方法。该算法针对经典NAS-RIF算法存在的缺陷,首先对含有椒盐噪声和高斯白噪声的遥感图像采用自适应伪中值滤波算法进行预处理,以尽可能排除图像中噪声的干扰;然后结合图像的灰度值,从算法支撑域和背景灰度值2个方面加以改进;最后对代价函数引入基于目标信息的修正项,改进了经典NAS-RIF算法的代价函数;与对数函数复合,使得改进后NAS-RIF算法的代价函数具有良好的收敛性;并采用共轭梯度法对改进自适应NAS-RIF算法进行整体优化。对仿真实验结果进行的主观和客观分析表明,本文算法的性能优于经典NAS-RIF算法、已有的改进NAS-RIF算法以及小波阈值去噪方法,能够胜任遥感噪声图像的复原处理。展开更多
文摘结合非下采样轮廓波变换(NSCT),提出了一种红外图像改进非局部均值滤波算法(Improved Non-local Means Filtering,INLMF)。该算法首先对红外噪声图像进行多尺度NSCT变换,其次分别从相似图像块自适应划分方法以及滤波权重计算方法 2个方面对经典非局部均值滤波算法进行适当改进,将改进后的非局部均值滤波算法(INLMF)应用于处理高频分解系数,然后将滤波后的高频分解系数与低频分解系数进行重构,得到去噪后的图像,最后对去噪后图像采用非负支撑域有限递归逆滤波(Non-negativity and Support Constraints Recursive Inverse Filtering,NAS-RIF)算法进行图像复原,以尽可能消除因滤波造成的图像失真。测试结果表明,本文算法滤波效果优于NLMF及其已有的改进算法。
文摘实现对遥感噪声图像的有效复原是遥感图像处理的一项重要研究内容。在对非负支撑域有限递归逆滤波(non-negativity and support constraints recursive inverse filtering,NAS-RIF)算法深入研究的基础上,提出一种基于改进自适应NAS-RIF算法的遥感噪声图像复原方法。该算法针对经典NAS-RIF算法存在的缺陷,首先对含有椒盐噪声和高斯白噪声的遥感图像采用自适应伪中值滤波算法进行预处理,以尽可能排除图像中噪声的干扰;然后结合图像的灰度值,从算法支撑域和背景灰度值2个方面加以改进;最后对代价函数引入基于目标信息的修正项,改进了经典NAS-RIF算法的代价函数;与对数函数复合,使得改进后NAS-RIF算法的代价函数具有良好的收敛性;并采用共轭梯度法对改进自适应NAS-RIF算法进行整体优化。对仿真实验结果进行的主观和客观分析表明,本文算法的性能优于经典NAS-RIF算法、已有的改进NAS-RIF算法以及小波阈值去噪方法,能够胜任遥感噪声图像的复原处理。