A numerical investigation of transient side-loads in an axisymmetric over-expanded thrust optimized contour nozzle is presented.These nozzles experience side-loads during start-up and shut-down operations,because of t...A numerical investigation of transient side-loads in an axisymmetric over-expanded thrust optimized contour nozzle is presented.These nozzles experience side-loads during start-up and shut-down operations,because of the flow separation at nozzle walls.Two types of flow separations such as FSS and RSS shock structure occur.A two-dimension numerical simulation has been carried out over an axisymmetric TOC nozzle to validate present results and investigate oscillatory flow characteristics for start-up processes.Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme.Governing equations are solved by coupled implicit scheme.Reynolds Stress turbulence model is selected.Present computed pressure at the nozzle wall closely matched with experiment data.A hysteresis phenomenon has been observed between these two shock structures.The transition from FSS to RSS pattern during start-up process has shown maximum nozzle wall pressure.Nozzle wall pressure and shear stress values have shown fluctuations during the FSS to RSS transition. The oscillatory pressure has been observed on the nozzle wall for high pressure ratio.Present results have shown that magnitude of the nozzle wall pressure variation is high for the oscillatory phenomenon.展开更多
This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of ...This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of dynamic shell buckling of MWNTs or MWNTs embedded in an elastic medium,the buckling stress is higher than the critical buckling stress of the corresponding static shell buckling under otherwise identical conditions.Detailed results are demonstrated for dynamic shell buckling of individual double-walled carbon nanotubes(DWNTs) or DWNTs embedded in an elastic medium.A phenomenon is shown that DWNTs or embedded DWNTs in dynamic shell buckling are prone to axisymmetric buckling rather than non-axisymmetric buckling.Numerical results also indicate that the axial buckling form shifts from the lower buckling mode to the higher buckling mode with increasing buckling stress,but the buckling mode is invariable for a certain domain of buckling stress.Further,an approximate analytic formula is presented for the buckling stress and the associated buckling wavelength for dynamic axisymmetric buckling of embedded DWNTs.The effect of radii is also examined.展开更多
基金supporting this research work under the Korea-Japan Basic Scientific Cooperation Program,No.F01-2009-000-10040-0
文摘A numerical investigation of transient side-loads in an axisymmetric over-expanded thrust optimized contour nozzle is presented.These nozzles experience side-loads during start-up and shut-down operations,because of the flow separation at nozzle walls.Two types of flow separations such as FSS and RSS shock structure occur.A two-dimension numerical simulation has been carried out over an axisymmetric TOC nozzle to validate present results and investigate oscillatory flow characteristics for start-up processes.Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme.Governing equations are solved by coupled implicit scheme.Reynolds Stress turbulence model is selected.Present computed pressure at the nozzle wall closely matched with experiment data.A hysteresis phenomenon has been observed between these two shock structures.The transition from FSS to RSS pattern during start-up process has shown maximum nozzle wall pressure.Nozzle wall pressure and shear stress values have shown fluctuations during the FSS to RSS transition. The oscillatory pressure has been observed on the nozzle wall for high pressure ratio.Present results have shown that magnitude of the nozzle wall pressure variation is high for the oscillatory phenomenon.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172304,11202210,11021262 and 10972010)the National Basic Research Program of China (Grant No. 2012CB937500)
文摘This paper studies the dynamic shell buckling behavior of multi-walled carbon nanotubes(MWNTs) embedded in an elastic medium under step axial load based on continuum mechanics model.It is shown that,for occurrence of dynamic shell buckling of MWNTs or MWNTs embedded in an elastic medium,the buckling stress is higher than the critical buckling stress of the corresponding static shell buckling under otherwise identical conditions.Detailed results are demonstrated for dynamic shell buckling of individual double-walled carbon nanotubes(DWNTs) or DWNTs embedded in an elastic medium.A phenomenon is shown that DWNTs or embedded DWNTs in dynamic shell buckling are prone to axisymmetric buckling rather than non-axisymmetric buckling.Numerical results also indicate that the axial buckling form shifts from the lower buckling mode to the higher buckling mode with increasing buckling stress,but the buckling mode is invariable for a certain domain of buckling stress.Further,an approximate analytic formula is presented for the buckling stress and the associated buckling wavelength for dynamic axisymmetric buckling of embedded DWNTs.The effect of radii is also examined.