Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the giv...Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the given algorithm performed global and superlinear convergence without strict complementarity.For the same linear complementarity problem(LCP),the algorithm needs similar iteration times to the literature.However,its accuracy is improved by at least 4 orders with calculation time reduced by almost 50%,and the iterative number is insensitive to the size of the LCP.Moreover,fewer iterations and shorter time are required for solving the problem by using inexact Newton methods for different initial points.展开更多
The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. A...The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.展开更多
The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm m...The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.展开更多
In this paper, the nonlinear optimization problems with inequality constraints are discussed. Combining the ideas of the strongly sub-feasible directions method and the s-generalized projection technique, a new algori...In this paper, the nonlinear optimization problems with inequality constraints are discussed. Combining the ideas of the strongly sub-feasible directions method and the s-generalized projection technique, a new algorithm starting with an arbitrary initial iteration point for the discussed problems is presented. At each iteration, the search direction is generated by a new s-generalized projection explicit formula, and the step length is yielded by a new Armijo line search. Under some necessary assumptions, not only the algorithm possesses global and strong convergence, but also the iterative points always get into the feasible set after finite iterations. Finally, some preliminary numerical results are reported.展开更多
基金Supported by the National Natural Science Foundation of China(No.51205286)
文摘Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the given algorithm performed global and superlinear convergence without strict complementarity.For the same linear complementarity problem(LCP),the algorithm needs similar iteration times to the literature.However,its accuracy is improved by at least 4 orders with calculation time reduced by almost 50%,and the iterative number is insensitive to the size of the LCP.Moreover,fewer iterations and shorter time are required for solving the problem by using inexact Newton methods for different initial points.
文摘The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.
文摘The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.
基金supported by the National Natural Science Foundation of China under Grant Nos.71061002 and 10771040the Project supported by Guangxi Science Foundation under Grant No.0832052Science Foundation of Guangxi Education Department under Grant No.200911MS202
文摘In this paper, the nonlinear optimization problems with inequality constraints are discussed. Combining the ideas of the strongly sub-feasible directions method and the s-generalized projection technique, a new algorithm starting with an arbitrary initial iteration point for the discussed problems is presented. At each iteration, the search direction is generated by a new s-generalized projection explicit formula, and the step length is yielded by a new Armijo line search. Under some necessary assumptions, not only the algorithm possesses global and strong convergence, but also the iterative points always get into the feasible set after finite iterations. Finally, some preliminary numerical results are reported.