Two-photon resonant nondegenerate four-wave mixing (NFWM) with the addition of a coupling field in Ba atomic vapour has been studied. We find that coherence of the atomic level transitions leads to suppression of th...Two-photon resonant nondegenerate four-wave mixing (NFWM) with the addition of a coupling field in Ba atomic vapour has been studied. We find that coherence of the atomic level transitions leads to suppression of the NFWM signal, giving rise to a dip with a linewidth that is linearly proportional to the intensity of the coupling field.展开更多
A detailed numerical modeling is performed to investigate heat transfer in high-porous, high-temperature non-gray semitransparent silica insulation materials. Radiation between fibers, conduction within fibers and con...A detailed numerical modeling is performed to investigate heat transfer in high-porous, high-temperature non-gray semitransparent silica insulation materials. Radiation between fibers, conduction within fibers and convection from the fibers to the surrounding fluid are considered. Macroscopic (porous media) modeling is used to determine the velocity, pressure and temperatures fields for fibrous insulation with a random packing geometry under natural convection. Based on a non-gray application of the solution to the radiative transfer equation, the value of the refractive index(n,m)is used to generate macroscopic average radiative properties such as extinction coefficient, scattering albedo and phase function. Key features of the macroscopic model include two-dimensional effects,non-gray radiative exchange, and the relaxation of the local thermodynamic non-equilibrium. The effectiveness of this numerical model is validated by the previous experimental data.展开更多
In the present paper the problem of nonlinear interaction of two mildly-relativistic circularly polarized lasers in a cold plasma is studied in order to investigate electromagneticaily induced transparency (EIT). Ba...In the present paper the problem of nonlinear interaction of two mildly-relativistic circularly polarized lasers in a cold plasma is studied in order to investigate electromagneticaily induced transparency (EIT). Based on a relativistic kinetic model, by expansion of relativistic Lorentz factor in terms of lasers amplitude, we obtain the coupled nonlinear dispersion relations. It is observed that due to resonance in the second harmonic of plasma beat-wave, the new EIT pass-band is created in the high intensities of lasers. The effect of amplitude and frequency variation on the dispersion is numerically investigated.展开更多
基金Project supported by the National Natural Science foundation of China (Grant Nos 10174096 and 10374113) and the National Program for Basic Research in China (Grant No 001CB309301).
文摘Two-photon resonant nondegenerate four-wave mixing (NFWM) with the addition of a coupling field in Ba atomic vapour has been studied. We find that coherence of the atomic level transitions leads to suppression of the NFWM signal, giving rise to a dip with a linewidth that is linearly proportional to the intensity of the coupling field.
文摘A detailed numerical modeling is performed to investigate heat transfer in high-porous, high-temperature non-gray semitransparent silica insulation materials. Radiation between fibers, conduction within fibers and convection from the fibers to the surrounding fluid are considered. Macroscopic (porous media) modeling is used to determine the velocity, pressure and temperatures fields for fibrous insulation with a random packing geometry under natural convection. Based on a non-gray application of the solution to the radiative transfer equation, the value of the refractive index(n,m)is used to generate macroscopic average radiative properties such as extinction coefficient, scattering albedo and phase function. Key features of the macroscopic model include two-dimensional effects,non-gray radiative exchange, and the relaxation of the local thermodynamic non-equilibrium. The effectiveness of this numerical model is validated by the previous experimental data.
文摘In the present paper the problem of nonlinear interaction of two mildly-relativistic circularly polarized lasers in a cold plasma is studied in order to investigate electromagneticaily induced transparency (EIT). Based on a relativistic kinetic model, by expansion of relativistic Lorentz factor in terms of lasers amplitude, we obtain the coupled nonlinear dispersion relations. It is observed that due to resonance in the second harmonic of plasma beat-wave, the new EIT pass-band is created in the high intensities of lasers. The effect of amplitude and frequency variation on the dispersion is numerically investigated.