AIM: To analyze the prevalence of germline MLH1 and MSH2 gene mutations and evaluate the clinical characteristics of Hungarian hereditary non-polyposis colorectal cancer (HNPCC) families. METHODS: Thirty-six kindreds ...AIM: To analyze the prevalence of germline MLH1 and MSH2 gene mutations and evaluate the clinical characteristics of Hungarian hereditary non-polyposis colorectal cancer (HNPCC) families. METHODS: Thirty-six kindreds were tested for mutations using conformation sensitive gel electrophoreses, direct sequencing and also screening for genomic rearrangements applying multiplex ligation-dependent probe amplifi cation (MLPA). RESULTS: Eighteen germline mutations (50%) were identifi ed, 9 in MLH1 and 9 in MSH2. Sixteen of these sequence alterations were considered pathogenic, the remaining two were non-conservative missense alterations occurring at highly conserved functional motifs. The majority of the defi nite pathogenic mutations (81%, 13/16) were found in families fulfilling the stringent Amsterdam Ⅰ/Ⅱ criteria, including three rearrangements revealed by MLPA (two in MSH2 and one in MLH1). However, in three out of sixteen HNPCC-suspected families (19%), a disease-causing alteration could be revealed. Furthermore, nine mutations described here are novel, and none of the sequence changes were found in more than one family.CONCLUSION: Our study describes for the f irst time the prevalence and spectrum of germline mismatch repair gene mutations in Hungarian HNPCC and suspected-HNPCC families. The results presented here suggest that clinical selection criteria should be relaxed and detection of genomic rearrangements should be included in genetic screening in this population.展开更多
Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulatio...Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulation techniques offer accurate manipulation of targeted areas,even selectively modulating specific neurons,in the brain.This makes it possible to investigate the cause-and-effect connections between neural activity and behavior,allowing for a better comprehension of the intricate brain dynamics towards complex environments.Non-human primates serve as an essential animal model for investigating these complex functions in brain research,bridging the gap between the basic research and clinical applications.One of the earliest optical studies utilizing optogenetic neuromodulation in monkeys was conducted in 2009.Since then,the optical-neural stimulations have been effectively applied in non-human primates.This review summarises recent research that employed optogenetics or infrared neurostimulation techniques to regulate brain function and behavior in non-human primates.The current state of optical-neural stimulations discussed here demonstrates their efficacy in advancing the understanding of brain systems.Nevertheless,there are still challenges that need to be addressed before they can fully achieve their potential.展开更多
基金Supported by the Hungarian Research Grants OTKA T-046570, NKFPI-00024/2005 and ETT 397/2006
文摘AIM: To analyze the prevalence of germline MLH1 and MSH2 gene mutations and evaluate the clinical characteristics of Hungarian hereditary non-polyposis colorectal cancer (HNPCC) families. METHODS: Thirty-six kindreds were tested for mutations using conformation sensitive gel electrophoreses, direct sequencing and also screening for genomic rearrangements applying multiplex ligation-dependent probe amplifi cation (MLPA). RESULTS: Eighteen germline mutations (50%) were identifi ed, 9 in MLH1 and 9 in MSH2. Sixteen of these sequence alterations were considered pathogenic, the remaining two were non-conservative missense alterations occurring at highly conserved functional motifs. The majority of the defi nite pathogenic mutations (81%, 13/16) were found in families fulfilling the stringent Amsterdam Ⅰ/Ⅱ criteria, including three rearrangements revealed by MLPA (two in MSH2 and one in MLH1). However, in three out of sixteen HNPCC-suspected families (19%), a disease-causing alteration could be revealed. Furthermore, nine mutations described here are novel, and none of the sequence changes were found in more than one family.CONCLUSION: Our study describes for the f irst time the prevalence and spectrum of germline mismatch repair gene mutations in Hungarian HNPCC and suspected-HNPCC families. The results presented here suggest that clinical selection criteria should be relaxed and detection of genomic rearrangements should be included in genetic screening in this population.
基金supported by grants from National Key R&D Program of China(2022YFB4700101)STI2030-Major Projects(2022ZD0204800)The National Natural Science Foundation of China(32070987)。
文摘Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulation techniques offer accurate manipulation of targeted areas,even selectively modulating specific neurons,in the brain.This makes it possible to investigate the cause-and-effect connections between neural activity and behavior,allowing for a better comprehension of the intricate brain dynamics towards complex environments.Non-human primates serve as an essential animal model for investigating these complex functions in brain research,bridging the gap between the basic research and clinical applications.One of the earliest optical studies utilizing optogenetic neuromodulation in monkeys was conducted in 2009.Since then,the optical-neural stimulations have been effectively applied in non-human primates.This review summarises recent research that employed optogenetics or infrared neurostimulation techniques to regulate brain function and behavior in non-human primates.The current state of optical-neural stimulations discussed here demonstrates their efficacy in advancing the understanding of brain systems.Nevertheless,there are still challenges that need to be addressed before they can fully achieve their potential.