The high cost of Pt-based catalysts and the sluggish dynamics of the oxygen reduction reaction (ORR) severely hinder the rapid development of fuel cells, Therefore, the search for inexpensive, non-noble metal cataly...The high cost of Pt-based catalysts and the sluggish dynamics of the oxygen reduction reaction (ORR) severely hinder the rapid development of fuel cells, Therefore, the search for inexpensive, non-noble metal catalysts to substitute Pt-based catalysts has become a critical issue in the ORR research field, As an earth-abundant element, the use of Cu to catalyze the ORR has been explored with the ultimate target of finding a replacement for Pt-based catalysts in fuel cells. This review mainly focuses on recent research progress with Cu-based ORR catalysts and aims to aid readers' understanding of the status of development in this field. The review begins with a general update on the state of knowledge pertaining to ORR, This is followed by an overview of recent research based on Cu nanomaterial catalysts, which comprises Cu complexes, compounds, and other structures. Charting the development of Cu-based ORR catalysts shows that designing Cu-based materials to mimic active enzymes is an effective approach for ORR catalysis. By collecting recent developments in the field, we hope that this review will promote further development of Cu-based ORR catalysts and their application in fuel cells.展开更多
Heteroatom-doped carbon materials as alternative catalysts for oxygen reduction reaction(ORR)have drawn increasing attention due to their tunable chemical and electronic structures for achieving high activity and stab...Heteroatom-doped carbon materials as alternative catalysts for oxygen reduction reaction(ORR)have drawn increasing attention due to their tunable chemical and electronic structures for achieving high activity and stability. However, there still remains a great challenge to fabricate porous heteroatoms dual-doped carbons with uniformly doping in a facile and controllable way. Herein,imidazole/imidazolium-functionalized metal-organic frameworks(MOFs) are employed as precursors and templates to achieve porous nitrogen and halogen dual-doped nanocarbons. Among these carbon materials, the as-prepared nitrogen/bromine dual-doped catalyst BrNC-800 exhibits the best ORR performance with a positive half-wave potential at 0.80 V(vs. RHE) in 0.1 mol L-1 KOH, which is comparable to the benchmark commercial 20 wt% Pt/C catalyst. BrNC-800 shows excellent long term stability and methanol tolerance.This work provides a facile approach to fabricate highly efficient heteroatoms dual-doped carbon catalysts for energy conversion.展开更多
基金supported by the National Natural Science Foundation of China(21575134,21275136)
文摘The high cost of Pt-based catalysts and the sluggish dynamics of the oxygen reduction reaction (ORR) severely hinder the rapid development of fuel cells, Therefore, the search for inexpensive, non-noble metal catalysts to substitute Pt-based catalysts has become a critical issue in the ORR research field, As an earth-abundant element, the use of Cu to catalyze the ORR has been explored with the ultimate target of finding a replacement for Pt-based catalysts in fuel cells. This review mainly focuses on recent research progress with Cu-based ORR catalysts and aims to aid readers' understanding of the status of development in this field. The review begins with a general update on the state of knowledge pertaining to ORR, This is followed by an overview of recent research based on Cu nanomaterial catalysts, which comprises Cu complexes, compounds, and other structures. Charting the development of Cu-based ORR catalysts shows that designing Cu-based materials to mimic active enzymes is an effective approach for ORR catalysis. By collecting recent developments in the field, we hope that this review will promote further development of Cu-based ORR catalysts and their application in fuel cells.
基金the financial support from the National Key Research and Development Program of China (2018YFA0208600)National Basic Research Program of China (973 Program, 2014CB845605)+3 种基金Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDJ-SSW-SLH045)Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)National Natural Science Foundation of China (21671188, 21871263, 21521061 and 21331006)Youth Innovation Promotion Association,Chinese Academy of Sciences (2014265)
文摘Heteroatom-doped carbon materials as alternative catalysts for oxygen reduction reaction(ORR)have drawn increasing attention due to their tunable chemical and electronic structures for achieving high activity and stability. However, there still remains a great challenge to fabricate porous heteroatoms dual-doped carbons with uniformly doping in a facile and controllable way. Herein,imidazole/imidazolium-functionalized metal-organic frameworks(MOFs) are employed as precursors and templates to achieve porous nitrogen and halogen dual-doped nanocarbons. Among these carbon materials, the as-prepared nitrogen/bromine dual-doped catalyst BrNC-800 exhibits the best ORR performance with a positive half-wave potential at 0.80 V(vs. RHE) in 0.1 mol L-1 KOH, which is comparable to the benchmark commercial 20 wt% Pt/C catalyst. BrNC-800 shows excellent long term stability and methanol tolerance.This work provides a facile approach to fabricate highly efficient heteroatoms dual-doped carbon catalysts for energy conversion.