In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all ...In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.展开更多
基金supported in part by National Basic Research Program of China under Grant No.2012CB316100National Natural Science Foundation of China under Grants 61372074 and 91438101+1 种基金Joint Funds of the National Natural Science Foundation of China under Grant No.U1504601Science and Technology on Communication Networks Laboratory under Grant KX132600032
文摘In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.