The outage performance of the multihop free-space optical(FSO) communication system with decode-and-forward(DF) protocol is studied by considering the joint effects of nonzero boresight pointing errors and atmospheric...The outage performance of the multihop free-space optical(FSO) communication system with decode-and-forward(DF) protocol is studied by considering the joint effects of nonzero boresight pointing errors and atmospheric turbulence modeled by exponentiated Weibull(EW) distribution. The closed-form analytical expression of outage probability is derived, and the results are validated through Monte Carlo simulation. Furthermore, the detailed analysis is provided to evaluate the impacts of turbulence strength, receiver aperture size, boresight displacement, beamwidth and number of relays on the outage performance for the studied system.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.JB160105)the“111 Project”of China(No.B08038)
文摘The outage performance of the multihop free-space optical(FSO) communication system with decode-and-forward(DF) protocol is studied by considering the joint effects of nonzero boresight pointing errors and atmospheric turbulence modeled by exponentiated Weibull(EW) distribution. The closed-form analytical expression of outage probability is derived, and the results are validated through Monte Carlo simulation. Furthermore, the detailed analysis is provided to evaluate the impacts of turbulence strength, receiver aperture size, boresight displacement, beamwidth and number of relays on the outage performance for the studied system.