期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非高斯分布噪声下诱发电位潜伏期变化自适应检测 被引量:3
1
作者 邱天爽 孔轩 郭颖 《大连理工大学学报》 CAS CSCD 北大核心 2002年第3期371-375,共5页
传统的高斯分布白噪声的模型不能很好地描述 EP信号中脑电图 (EEG)和其他噪声的特性 .因此 ,根据α稳定分布噪声理论和 EP信号中噪声的非高斯特性 ,提出了一种基于最小分数低阶矩的自适应诱发电位潜伏期估计方法 .这种方法既可以应用于... 传统的高斯分布白噪声的模型不能很好地描述 EP信号中脑电图 (EEG)和其他噪声的特性 .因此 ,根据α稳定分布噪声理论和 EP信号中噪声的非高斯特性 ,提出了一种基于最小分数低阶矩的自适应诱发电位潜伏期估计方法 .这种方法既可以应用于高斯噪声环境 ,又在低阶α稳定分布噪声 (一类典型的非高斯噪声 )环境下具有良好的韧性 ,是一种可靠的检测EP信号潜伏期变化的方法 .分析和实验表明 ,α稳定分布噪声模型是一种适合于描述带噪EP信号统计特性的随机噪声模型 ,所得到的 EP信号潜伏期变化的检测结果 。 展开更多
关键词 非高斯分布噪声 诱发电位 潜伏期 自适应检测
下载PDF
Robust SLAM localization method based on improved variational Bayesian filtering 被引量:1
2
作者 Zhai Hongqi Wang Lihui +1 位作者 Cai Tijing Meng Qian 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期340-349,共10页
Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outli... Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outliers,or unknown and time-varying noise statistical characteristics,a robust SLAM method based on the improved variational Bayesian adaptive Kalman filtering(IVBAKF)is proposed.First,the measurement noise covariance is estimated using the variable Bayesian adaptive filtering algorithm.Then,the estimated covariance matrix is robustly processed through the weight function constructed in the form of a reweighted average.Finally,the system updates are iterated multiple times to further gradually correct the state estimation error.Furthermore,to observe features at different depths,a feature measurement model containing depth parameters is constructed.Experimental results show that when the measurement noise does not obey the Gaussian distribution and there are outliers in the measurement information,compared with the variational Bayesian adaptive SLAM method,the positioning accuracy of the proposed method is improved by 17.23%,20.46%,and 17.76%,which has better applicability and robustness to environmental disturbance. 展开更多
关键词 underwater navigation and positioning non-Gaussian distribution time-varying noise variational Bayesian method simultaneous localization and mapping(SLAM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部