期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自适应容积粒子滤波的车辆状态估计 被引量:10
1
作者 邢德鑫 魏民祥 +2 位作者 赵万忠 汪 吴树凡 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第3期445-453,共9页
针对车辆状态估计中由模型的强非线性、噪声的非高斯分布等相关因素导致估计精度下降甚至发散的问题,本文提出了基于自适应容积粒子滤波(Adaptive cubature particle filter,ACPF)的车辆状态估计器。首先基于非稳态动态轮胎模型,构建高... 针对车辆状态估计中由模型的强非线性、噪声的非高斯分布等相关因素导致估计精度下降甚至发散的问题,本文提出了基于自适应容积粒子滤波(Adaptive cubature particle filter,ACPF)的车辆状态估计器。首先基于非稳态动态轮胎模型,构建高维度非线性八自由度车辆模型。其次利用自适应容积卡尔曼滤波(Adaptive cubature Kalman filter,ACKF)算法更新基本粒子滤波(Particle filter,PF)算法的重要性密度函数,以完成自适应容积粒子滤波算法设计。利用车载传感器信息,运用ACPF算法实现对车辆的侧倾角、质心侧偏角等关键状态变量高精度在线观测。搭建Simulink-Carsim联合仿真平台进行了算法的验证,结果表明该算法状态估计精度高于传统无迹粒子滤波(Unscented particle filter,UPF)算法,且算法运算效率高于UPF算法,而传统PF估计值发散。研究结果为实现车辆动力学精准控制提供了理论支持。 展开更多
关键词 高维线性车辆模型 非高斯分布滤波 车辆状态估计 自适应容积粒子滤波
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部