A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbala...A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbalance method.Generalized Boussinesq equation,KP equation,and mKdV equation are chosen as examples to illustrateour method.This approach is also applicable to a large variety of nonlinear evolution equations.展开更多
The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case ...The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case where a satisfies degenerated structure conditions is studied. It is proved that uh converges weakly in W01,1 (?) to the unique solution of a limit problem as h ? '. Moreover, explicit expressions for the limit problem are obtained.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 11071209the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province under Grant No. 10KJBll0011
文摘A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbalance method.Generalized Boussinesq equation,KP equation,and mKdV equation are chosen as examples to illustrateour method.This approach is also applicable to a large variety of nonlinear evolution equations.
文摘The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case where a satisfies degenerated structure conditions is studied. It is proved that uh converges weakly in W01,1 (?) to the unique solution of a limit problem as h ? '. Moreover, explicit expressions for the limit problem are obtained.