In this paper,under certain hypotheses the authors prove the global existence and uniqueness of discontinuous solutions to a class of generalizd Riemann Problems,the solutions contain two contact discontinuities.
In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smo...In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.展开更多
In this article, the author considers the Cauchy problem for quasilinear non-strict ly hyperbolic systems and obtain a blow-up result for the C1 solution to the Cauchy problem with weaker decaying initial data.
文摘In this paper,under certain hypotheses the authors prove the global existence and uniqueness of discontinuous solutions to a class of generalizd Riemann Problems,the solutions contain two contact discontinuities.
文摘In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.
文摘In this article, the author considers the Cauchy problem for quasilinear non-strict ly hyperbolic systems and obtain a blow-up result for the C1 solution to the Cauchy problem with weaker decaying initial data.