在机器学习以及其它相关领域中,针对非凸函数的优化问题,目前存在的算法理论上对非凸函数的收敛和全局稳定性无法得到有效保证。本文提出将Lp范数(p为偶数)引入到非凸函数中,并在此基础上设计一种周期交替方向乘子(Periodic Alternating...在机器学习以及其它相关领域中,针对非凸函数的优化问题,目前存在的算法理论上对非凸函数的收敛和全局稳定性无法得到有效保证。本文提出将Lp范数(p为偶数)引入到非凸函数中,并在此基础上设计一种周期交替方向乘子(Periodic Alternating Direction Method of Multipliers, PADMM)的优化算法,用于此类非凸函数收敛性分析。我们证明在惩罚参数足够大的情况下,带偶次惩罚范数的非凸函数必收敛,并且收敛到全局最小值。此外,PADMM算法不对变量更新的先后顺序作特殊要求,这一特性大大增强了PADMM算法在处理各类非凸函数优化问题时的普适性。展开更多
本文主要探讨指数函数族中一类特殊参数——非回归参数的Hausdorff维数问题,这一研究是在邱维元关于指数函数族逃逸参数的Hausdorff维数为2的重要发现基础上进行的自然延伸与深化。本文旨在证明,在给定的一个固定区域内,指数函数族中非...本文主要探讨指数函数族中一类特殊参数——非回归参数的Hausdorff维数问题,这一研究是在邱维元关于指数函数族逃逸参数的Hausdorff维数为2的重要发现基础上进行的自然延伸与深化。本文旨在证明,在给定的一个固定区域内,指数函数族中非回归且非逃逸参数的集合具有的Hausdorff维数严格小于某个给定的正数。This paper primarily delves into the Hausdorff dimension of a special class of parameters within the exponential family—the non-recurrent parameters. This investigation constitutes a natural extension and deepening of Qiu’s seminal finding that the Hausdorff dimension of escaping parameters of the exponential family is 2. The objective of this paper is to prove that, within a given fixed region, the Hausdorff dimension of the set of non-escaping non-recurrent parameters in the exponential function family is strictly less than a specified positive number.展开更多
文摘在机器学习以及其它相关领域中,针对非凸函数的优化问题,目前存在的算法理论上对非凸函数的收敛和全局稳定性无法得到有效保证。本文提出将Lp范数(p为偶数)引入到非凸函数中,并在此基础上设计一种周期交替方向乘子(Periodic Alternating Direction Method of Multipliers, PADMM)的优化算法,用于此类非凸函数收敛性分析。我们证明在惩罚参数足够大的情况下,带偶次惩罚范数的非凸函数必收敛,并且收敛到全局最小值。此外,PADMM算法不对变量更新的先后顺序作特殊要求,这一特性大大增强了PADMM算法在处理各类非凸函数优化问题时的普适性。
文摘本文主要探讨指数函数族中一类特殊参数——非回归参数的Hausdorff维数问题,这一研究是在邱维元关于指数函数族逃逸参数的Hausdorff维数为2的重要发现基础上进行的自然延伸与深化。本文旨在证明,在给定的一个固定区域内,指数函数族中非回归且非逃逸参数的集合具有的Hausdorff维数严格小于某个给定的正数。This paper primarily delves into the Hausdorff dimension of a special class of parameters within the exponential family—the non-recurrent parameters. This investigation constitutes a natural extension and deepening of Qiu’s seminal finding that the Hausdorff dimension of escaping parameters of the exponential family is 2. The objective of this paper is to prove that, within a given fixed region, the Hausdorff dimension of the set of non-escaping non-recurrent parameters in the exponential function family is strictly less than a specified positive number.