We derive the mesoscopic interparticle potentials from macroscopic thermodynamics for van der Waals,Redlich-Kwong,and Redlich-Kwong-Soave equations of state and find that all these potentials are very similar to the L...We derive the mesoscopic interparticle potentials from macroscopic thermodynamics for van der Waals,Redlich-Kwong,and Redlich-Kwong-Soave equations of state and find that all these potentials are very similar to the Lennard-Jones potential.To investigate the interfacial property at the mesoscale level,we incorporate free energy functions into the single-component multiphase lattice Boltzmann model and obtain the saturated density coexistence curves and interface mass density profiles across the interface using this method with different equations of state.The simulation results accurately reproduce the properties of equilib-rium thermodynamics.Numerical results for single-component phase transitions indicate that a bubble-growth process is obtained and the equilibrium phase diagram is achieved at a given temperature.Bulk free energy,the interfacial energy coefficient,and other properties of nonequilibrium thermodynamic parameters,which are used to examine interfacial properties,are obtained in these simulations,and all these parameters are found to obey irreversible thermodynamics.展开更多
基金supported by the, National Natural Science Foundation of China (50406012, 51076172)the National Key Laboratory of Bubble Physics and Natural Circulation of NPIC (9140C710901090C71, 9140C7101020802)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20090191120017)
文摘We derive the mesoscopic interparticle potentials from macroscopic thermodynamics for van der Waals,Redlich-Kwong,and Redlich-Kwong-Soave equations of state and find that all these potentials are very similar to the Lennard-Jones potential.To investigate the interfacial property at the mesoscale level,we incorporate free energy functions into the single-component multiphase lattice Boltzmann model and obtain the saturated density coexistence curves and interface mass density profiles across the interface using this method with different equations of state.The simulation results accurately reproduce the properties of equilib-rium thermodynamics.Numerical results for single-component phase transitions indicate that a bubble-growth process is obtained and the equilibrium phase diagram is achieved at a given temperature.Bulk free energy,the interfacial energy coefficient,and other properties of nonequilibrium thermodynamic parameters,which are used to examine interfacial properties,are obtained in these simulations,and all these parameters are found to obey irreversible thermodynamics.