This paper assesses the interannual variabilities of simulated sea surface salinity(SSS)and freshwater flux(FWF)in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6)...This paper assesses the interannual variabilities of simulated sea surface salinity(SSS)and freshwater flux(FWF)in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).The authors focus on comparing the simulated SSS and FWF responses to El Nino–Southern Oscillation(ENSO)from two generations of models developed by the same group.The results show that CMIP5 and CMIP6 models can perform well in simulating the spatial distributions of the SSS and FWF responses associated with ENSO,as well as their relationship.It is found that most CMIP6 models have improved in simulating the geographical distribution of the SSS and FWF interannual variability in the tropical Pacific compared to CMIP5 models.In particular,CMIP6 models have corrected the underestimation of the spatial relationship of the FWF and SSS variability with ENSO in the central-western Pacific.In addition,CMIP6 models outperform CMIP5 models in simulating the FWF interannual variability(spatial distribution and intensity)in the tropical Pacific.However,as a whole,CMIP6 models do not show improved skill scores for SSS interannual variability,which is due to their overestimation of the intensity in some models.Large uncertainties exist in simulating the interannual variability of SSS among CMIP5 and CMIP6 models and some improvements with respect to physical processes are needed.展开更多
基金This study was supported by the National Key Research and Development Program on the Monitoring,Early Warning and Prevention of Major Natural Disasters[grant numbers 2019YFC1510004 and 2018YFC1506002]the Jiangsu Collaborative Innovation Center for Climate Change.
文摘This paper assesses the interannual variabilities of simulated sea surface salinity(SSS)and freshwater flux(FWF)in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).The authors focus on comparing the simulated SSS and FWF responses to El Nino–Southern Oscillation(ENSO)from two generations of models developed by the same group.The results show that CMIP5 and CMIP6 models can perform well in simulating the spatial distributions of the SSS and FWF responses associated with ENSO,as well as their relationship.It is found that most CMIP6 models have improved in simulating the geographical distribution of the SSS and FWF interannual variability in the tropical Pacific compared to CMIP5 models.In particular,CMIP6 models have corrected the underestimation of the spatial relationship of the FWF and SSS variability with ENSO in the central-western Pacific.In addition,CMIP6 models outperform CMIP5 models in simulating the FWF interannual variability(spatial distribution and intensity)in the tropical Pacific.However,as a whole,CMIP6 models do not show improved skill scores for SSS interannual variability,which is due to their overestimation of the intensity in some models.Large uncertainties exist in simulating the interannual variability of SSS among CMIP5 and CMIP6 models and some improvements with respect to physical processes are needed.