声学黑洞(Acoustic Black Hole,ABH)对弯曲波的聚集效应具有宽频、高效、实现方法简单灵活等特点,在结构减振降噪领域具有广泛的应用前景。以一维声学黑洞梁为对象,结合声学黑洞半解析建模计算方法和响应面优化方法,分析声学黑洞特征长...声学黑洞(Acoustic Black Hole,ABH)对弯曲波的聚集效应具有宽频、高效、实现方法简单灵活等特点,在结构减振降噪领域具有广泛的应用前景。以一维声学黑洞梁为对象,结合声学黑洞半解析建模计算方法和响应面优化方法,分析声学黑洞特征长度、截断厚度、幂律以及阻尼层特征长度和厚度这5个参数对一维声学黑洞梁减振效果的影响规律。以一维声学黑洞梁的减振效果为优化目标,对梁和阻尼的结构参数进行优化设计,优化后的一维声学黑洞梁结构在10~8000Hz频率范围内的平均加速度级降低19.03dB。研究对一维声学黑洞梁结构在减振领域的工程应用具有参考价值。展开更多
文摘声学黑洞(Acoustic Black Hole,ABH)对弯曲波的聚集效应具有宽频、高效、实现方法简单灵活等特点,在结构减振降噪领域具有广泛的应用前景。以一维声学黑洞梁为对象,结合声学黑洞半解析建模计算方法和响应面优化方法,分析声学黑洞特征长度、截断厚度、幂律以及阻尼层特征长度和厚度这5个参数对一维声学黑洞梁减振效果的影响规律。以一维声学黑洞梁的减振效果为优化目标,对梁和阻尼的结构参数进行优化设计,优化后的一维声学黑洞梁结构在10~8000Hz频率范围内的平均加速度级降低19.03dB。研究对一维声学黑洞梁结构在减振领域的工程应用具有参考价值。