A surface edge element method is proposed and implemented in the study ofelectromagnetic scattering fields of general targets. The basis functions for surfaces of arbitraryshape are derived according to the geometrica...A surface edge element method is proposed and implemented in the study ofelectromagnetic scattering fields of general targets. The basis functions for surfaces of arbitraryshape are derived according to the geometrical properties of each triangular patch. The proposedbasis functions are 3-D linear functions and the tangential components of the vectors are continuousas the traditional edge element method. Combined field integral equations (CFIE) that include bothelectrical field and magnetic field integral equations are used to model the electromagneticscattering of general dielectric targets. Special treatment for singularity is presented to enhancethe quality of numerical solutions. The proposed method is used to compute the scattering fieldsfrom various targets. Numerical results obtained by the proposed method are validated by resultsfrom other numerical methods.展开更多
文摘A surface edge element method is proposed and implemented in the study ofelectromagnetic scattering fields of general targets. The basis functions for surfaces of arbitraryshape are derived according to the geometrical properties of each triangular patch. The proposedbasis functions are 3-D linear functions and the tangential components of the vectors are continuousas the traditional edge element method. Combined field integral equations (CFIE) that include bothelectrical field and magnetic field integral equations are used to model the electromagneticscattering of general dielectric targets. Special treatment for singularity is presented to enhancethe quality of numerical solutions. The proposed method is used to compute the scattering fieldsfrom various targets. Numerical results obtained by the proposed method are validated by resultsfrom other numerical methods.