Cu films on Fe, Ni and Ag substrates, Ni films on Fe and Ag substrates, Ag film on Cu substrate, Cr film on Fe substrate, Ag film on Ag substrate, Ni film on Ni substrate and Cu film on Cu substrate were deposited by ...Cu films on Fe, Ni and Ag substrates, Ni films on Fe and Ag substrates, Ag film on Cu substrate, Cr film on Fe substrate, Ag film on Ag substrate, Ni film on Ni substrate and Cu film on Cu substrate were deposited by electroplating. The average internal stress in all films, except Cr, was in-situ measured by the cantilever beam test. The interfacial stress is very large in the films with different materials with substrates and is zero in the films with the same material with substrates. The interfacial stress character obtained from the cantilever beam bending direction is consistent with that obtained from the modified Thomas–Fermi–Dirac electron theory.展开更多
In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as w...In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.展开更多
The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigate...The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.展开更多
The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured forc...The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.展开更多
This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed...This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) temperature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current density distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature.展开更多
The aminolysis can effectively introduce primary amine (- quent surface fiiofunctionalization reactions. However, less NH2) groups onto polyester materials, enabling a variety of subse- attention has been paid to th...The aminolysis can effectively introduce primary amine (- quent surface fiiofunctionalization reactions. However, less NH2) groups onto polyester materials, enabling a variety of subse- attention has been paid to the basic knowledge of aminolysis reac- tion in terms of reaction kinetics and its influences on materials properties. In this study, taking the widely used poly(e-caprolactone) (PCL) as a typical example, the influences of diamines and solvent property on the surface -NH2 density are firstly assessed by using X-ray photoelectron spectroscopy (XPS) and colorimetric analysis. Results show that smaller dia- mine molecules and nonpolar alcohols could accelerate the reaction. The reaction kinetics with 1,6-hexanediamine is further investigated as a function of temperature, reaction time, and diamine concentration. During the initial stage, the reaction shows a 1^st order kinetics with the diamine concentration and has an activation energy of 54.5 kJ/mol. Ionization state of the -NH2 groups on the PCL surface is determined, revealing that the pKa of -NH3^+ (〈5) is much lower than that of the corresponding diamine molecules in solution. After aminolysis, surface hydrophilicity of PCL membrane is significantly enhanced, while surface elastic modulus and average molecular weight are decreased to some extent, and others such as weight, surface mor- phology and bulk mechanical strength are not apparently changed. The introduced -NH2 groups are found to be largely lost at 37 ℃, but can be mostly maintained at low temperature.展开更多
Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ a...Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.展开更多
Adjusting the spacers between the electron-acceptor and the elector-donor is important to design organic ternary memory material but rarely reported. In this paper, two small molecules, ZIPGA and ZIPCAD with benzene r...Adjusting the spacers between the electron-acceptor and the elector-donor is important to design organic ternary memory material but rarely reported. In this paper, two small molecules, ZIPGA and ZIPCAD with benzene ring or triphenylamine as the spacers, were designed and synthesized to fabricate memory devices. The A1/ZIPGA/indium-tin oxide (ITO) device showed ternary characteristics, whereas A1/ZIPCAD/ITO had no obvious memory characteristics. Density functional theory calculation, X-ray diffraction (XRD) and atomic force microscopy (AFM) were employed to interpret the different memory properties. ZIPGA thin film has the closer intermolecular packing and flatter surface morphology than ZIPCAD film, which was favorable to the electron migration. This work demonstrates the importance of spacers and reveals that triphenylamine may be not a good spacer in design of new memory material.展开更多
The crustal structure of Xiachayu-Gonghe geophysical profile in eastern Tibetan plateau is simulated with Bouguer anomaly corrected for sediments and lithosphere. The forward simulation shows that the thickness of upp...The crustal structure of Xiachayu-Gonghe geophysical profile in eastern Tibetan plateau is simulated with Bouguer anomaly corrected for sediments and lithosphere. The forward simulation shows that the thickness of upper crust in eastem Tibetan plateau is about 20 km, and the density is 2.78 × 10^3 kg/m^3. The bottom interface of middle crust changes from 30 km to 40 km, the density of middle crust is 2.89 × 10^3 kg/m^3. The materials with low density of 2.78 × 10^3 kg/m^3 exist in middle crust, and those with high density of 3.33 × 10^3 kg/m^3 exist at the bottom of middle crust between Wenquan and Tanggemu. The density is 3.10× 10^3 kg/m^3 in lower crust. The shallowest depth of Moho interface is about 56 km, and the deepest one is about 74 km, the undulation of interface is large, the deep Moho is located in Xiachayu, Chayu, Nujiang, and Wenquan. The crustal density of eastern Tibetan plateau is larger than that of central section; the low velocity layers are located in middle crust and bottom in eastern Tibetan plateau and at the bottom of the upper crust in the central plateau.展开更多
基金Project(152102410035)supported by the Henan International Cooperation in Science and Technology,ChinaProject(144200510001)supported by the Henan Province Program for Science and Technology Innovation Talents,China+1 种基金Project(50771042)supported by the National Natural Science Foundation of ChinaProject(IRT1234)supported by the Program for Changjiang Scholars and Innovative Research Team in University,China
文摘Cu films on Fe, Ni and Ag substrates, Ni films on Fe and Ag substrates, Ag film on Cu substrate, Cr film on Fe substrate, Ag film on Ag substrate, Ni film on Ni substrate and Cu film on Cu substrate were deposited by electroplating. The average internal stress in all films, except Cr, was in-situ measured by the cantilever beam test. The interfacial stress is very large in the films with different materials with substrates and is zero in the films with the same material with substrates. The interfacial stress character obtained from the cantilever beam bending direction is consistent with that obtained from the modified Thomas–Fermi–Dirac electron theory.
文摘In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.
基金Project(50864001) supported by the National Natural Science Foundation of China
文摘The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.
文摘The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.
基金Supported by the National High Technology Research and Development Program of China (2006AA05Z148)
文摘This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) temperature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current density distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature.
基金financially supported by the National Natural Science Foundation of China (20934003)the National Basic Research Program of China (2011CB606203)
文摘The aminolysis can effectively introduce primary amine (- quent surface fiiofunctionalization reactions. However, less NH2) groups onto polyester materials, enabling a variety of subse- attention has been paid to the basic knowledge of aminolysis reac- tion in terms of reaction kinetics and its influences on materials properties. In this study, taking the widely used poly(e-caprolactone) (PCL) as a typical example, the influences of diamines and solvent property on the surface -NH2 density are firstly assessed by using X-ray photoelectron spectroscopy (XPS) and colorimetric analysis. Results show that smaller dia- mine molecules and nonpolar alcohols could accelerate the reaction. The reaction kinetics with 1,6-hexanediamine is further investigated as a function of temperature, reaction time, and diamine concentration. During the initial stage, the reaction shows a 1^st order kinetics with the diamine concentration and has an activation energy of 54.5 kJ/mol. Ionization state of the -NH2 groups on the PCL surface is determined, revealing that the pKa of -NH3^+ (〈5) is much lower than that of the corresponding diamine molecules in solution. After aminolysis, surface hydrophilicity of PCL membrane is significantly enhanced, while surface elastic modulus and average molecular weight are decreased to some extent, and others such as weight, surface mor- phology and bulk mechanical strength are not apparently changed. The introduced -NH2 groups are found to be largely lost at 37 ℃, but can be mostly maintained at low temperature.
基金supported by the National Basic Research Program of Chi-na(Grant Nos.2011CB707601,2011CB707605)the National Natural Science Foundation of China(Grant No.50925519)+3 种基金the Research Funding for the Doctor Program from China Educational Ministry(Grant No.20100092110051)the Innovative Project for Graduate Students of Jiangsu Province(Grant No.CXZZ13_0087)the Scientific Research Founda-tion of Graduate School of Southeast University(Grant No.YBJJ1322)The calculations were performed on Tianhe-1A at National Supercomputing Center in Tianjin,China
文摘Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.
基金supported by the National Natural Science Foundation of China (21176164, 21336005)the Chinese-Singapore Joint Project (2012DFG41900)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Adjusting the spacers between the electron-acceptor and the elector-donor is important to design organic ternary memory material but rarely reported. In this paper, two small molecules, ZIPGA and ZIPCAD with benzene ring or triphenylamine as the spacers, were designed and synthesized to fabricate memory devices. The A1/ZIPGA/indium-tin oxide (ITO) device showed ternary characteristics, whereas A1/ZIPCAD/ITO had no obvious memory characteristics. Density functional theory calculation, X-ray diffraction (XRD) and atomic force microscopy (AFM) were employed to interpret the different memory properties. ZIPGA thin film has the closer intermolecular packing and flatter surface morphology than ZIPCAD film, which was favorable to the electron migration. This work demonstrates the importance of spacers and reveals that triphenylamine may be not a good spacer in design of new memory material.
基金Supported by the National Natural Science Foundation of China (No. 40874036,No. 90814009,No. 40774011)the National Science & Technology Major Project of China (No. 2008ZX05008-006-062)
文摘The crustal structure of Xiachayu-Gonghe geophysical profile in eastern Tibetan plateau is simulated with Bouguer anomaly corrected for sediments and lithosphere. The forward simulation shows that the thickness of upper crust in eastem Tibetan plateau is about 20 km, and the density is 2.78 × 10^3 kg/m^3. The bottom interface of middle crust changes from 30 km to 40 km, the density of middle crust is 2.89 × 10^3 kg/m^3. The materials with low density of 2.78 × 10^3 kg/m^3 exist in middle crust, and those with high density of 3.33 × 10^3 kg/m^3 exist at the bottom of middle crust between Wenquan and Tanggemu. The density is 3.10× 10^3 kg/m^3 in lower crust. The shallowest depth of Moho interface is about 56 km, and the deepest one is about 74 km, the undulation of interface is large, the deep Moho is located in Xiachayu, Chayu, Nujiang, and Wenquan. The crustal density of eastern Tibetan plateau is larger than that of central section; the low velocity layers are located in middle crust and bottom in eastern Tibetan plateau and at the bottom of the upper crust in the central plateau.