In order to study pillar and overburden response to retreat mining, a ground control program was conducted at a Central Appalachian Mine. The program consisted of several monitoring methods including a seismic monitor...In order to study pillar and overburden response to retreat mining, a ground control program was conducted at a Central Appalachian Mine. The program consisted of several monitoring methods including a seismic monitoring system, borehole pressure cells in the pillars, and time-lapse photogrammetry of the pillar ribs. Two parallel geophone arrays were installed, one on each side of the panel with the sensors mounted 3 m into the roof. A total of fourteen geophones recorded more than 5000 events during the panel retreat. A MIDAS datalogger was used to record pressure from borehole pressure cells(BPCs)located in two adjacent pillars that were not mined during retreat. A series of photographs were taken of the pillars that had the BPCs as the face approached so that deformation of the entire rib could be monitored using photogrammetry. Results showed that pillar stability and cave development were as expected. The BPCs showed an increase in loading when the face was 115 m inby and a clear onset of the forward abutment at 30 m. The photogrammetry results displayed pillar deformation corresponding to the increased loading. The microseismic monitoring results showed the overburden caving inby the face, again as expected. The significance of these results lies in two points,(1) we can quantify the safe manner in which this mine is conducting retreating operations, and(2) we can use volumetric technologies(photogrammetry and microseismic) to monitor entire volumes of the mine in addition to the traditional point-location geotechnical measurements(BPCs).展开更多
This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the st...This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.展开更多
基金supported by a NIOSH Ground Control Capacity Building grant
文摘In order to study pillar and overburden response to retreat mining, a ground control program was conducted at a Central Appalachian Mine. The program consisted of several monitoring methods including a seismic monitoring system, borehole pressure cells in the pillars, and time-lapse photogrammetry of the pillar ribs. Two parallel geophone arrays were installed, one on each side of the panel with the sensors mounted 3 m into the roof. A total of fourteen geophones recorded more than 5000 events during the panel retreat. A MIDAS datalogger was used to record pressure from borehole pressure cells(BPCs)located in two adjacent pillars that were not mined during retreat. A series of photographs were taken of the pillars that had the BPCs as the face approached so that deformation of the entire rib could be monitored using photogrammetry. Results showed that pillar stability and cave development were as expected. The BPCs showed an increase in loading when the face was 115 m inby and a clear onset of the forward abutment at 30 m. The photogrammetry results displayed pillar deformation corresponding to the increased loading. The microseismic monitoring results showed the overburden caving inby the face, again as expected. The significance of these results lies in two points,(1) we can quantify the safe manner in which this mine is conducting retreating operations, and(2) we can use volumetric technologies(photogrammetry and microseismic) to monitor entire volumes of the mine in addition to the traditional point-location geotechnical measurements(BPCs).
文摘This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.