期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于面向通道分组卷积网络的番茄主要器官实时识别
被引量:
15
1
作者
周云成
许童羽
+1 位作者
邓寒冰
苗腾
《农业工程学报》
EI
CAS
CSCD
北大核心
2018年第10期153-162,共10页
番茄器官的实时准确识别是实现自动采摘、靶向施药等自动化生产的关键。该文提出一种基于面向通道分组卷积网络的番茄主要器官实时识别网络模型,该模型直接用特征图预测番茄器官目标边界和类型。以统计可分性、计算速度等为判据,并结合...
番茄器官的实时准确识别是实现自动采摘、靶向施药等自动化生产的关键。该文提出一种基于面向通道分组卷积网络的番茄主要器官实时识别网络模型,该模型直接用特征图预测番茄器官目标边界和类型。以统计可分性、计算速度等为判据,并结合样本扩增训练,分析了该网络和几种典型网络在番茄器官图像处理上的性能,以此筛选出识别网络的基础结构,在基础结构后面分别附加带dropout层的面向通道分组卷积模块和全卷积层作为识别网络的总体架构。试验结果表明:用面向通道分组卷积网络作为识别网络的基础结构,可在显著提高网络召回率、识别速度和精度的前提下,大幅降低模型的大小,该结构网络对花、果、茎识别的平均精度分别为96.52%、97.85%和82.62%,召回率分别为77.39%、69.33%和64.23%,识别速度为62帧/s;与YOLOv2相比,该文识别网络召回率提高了14.03个百分点,精度提高了2.51个百分点。
展开更多
关键词
图像识别
算法
实时识别
番茄
卷积
神经网络
面向通道分组卷积
特征提取
下载PDF
职称材料
题名
基于面向通道分组卷积网络的番茄主要器官实时识别
被引量:
15
1
作者
周云成
许童羽
邓寒冰
苗腾
机构
沈阳农业大学信息与电气工程学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2018年第10期153-162,共10页
基金
辽宁省科学事业公益研究基金(2016004001)
国家自然科学基金(31601218)
沈阳市重点科技研发计划项目(17-174-3-00)
文摘
番茄器官的实时准确识别是实现自动采摘、靶向施药等自动化生产的关键。该文提出一种基于面向通道分组卷积网络的番茄主要器官实时识别网络模型,该模型直接用特征图预测番茄器官目标边界和类型。以统计可分性、计算速度等为判据,并结合样本扩增训练,分析了该网络和几种典型网络在番茄器官图像处理上的性能,以此筛选出识别网络的基础结构,在基础结构后面分别附加带dropout层的面向通道分组卷积模块和全卷积层作为识别网络的总体架构。试验结果表明:用面向通道分组卷积网络作为识别网络的基础结构,可在显著提高网络召回率、识别速度和精度的前提下,大幅降低模型的大小,该结构网络对花、果、茎识别的平均精度分别为96.52%、97.85%和82.62%,召回率分别为77.39%、69.33%和64.23%,识别速度为62帧/s;与YOLOv2相比,该文识别网络召回率提高了14.03个百分点,精度提高了2.51个百分点。
关键词
图像识别
算法
实时识别
番茄
卷积
神经网络
面向通道分组卷积
特征提取
Keywords
image recognition
algorithms
real time system
tomato
convolution neural network
channel wise group convolution
feature extraction
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于面向通道分组卷积网络的番茄主要器官实时识别
周云成
许童羽
邓寒冰
苗腾
《农业工程学报》
EI
CAS
CSCD
北大核心
2018
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部