The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Fir...The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.展开更多
In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle cha...In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle changes nonlinearly with anisotropic factor. To get clear of the changing process of contact angle on grooved surfaces from microscale to macroscale, we carried out theoretical analysis with moment equilibrium method being adopted. In addition, the variation of contact angles in different directions was investigated and a mathematic model to calculate arbitrary contact angles around the elliptic contact line was suggested. For the convenience of potential applications, a symbolic contact angle was proposed to characterize the ellipsoidal cap droplet on grooved surfaces. Our results will offer help to the future design of patterned surfaces in practical applications,and deepen the understanding of wetting behavior on grooved surfaces.展开更多
文摘The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1562105,11611130019 and 11372313)the Chinese Academy of Sciences(CAS)through CAS Interdisciplinary Innovation Team Project+1 种基金the CAS Key Research Program of Frontier Sciences(Grant No.QYZDJ-SSW-JSC019)the CAS Strategic Priority Research Program(Grant No.XDB22040401)
文摘In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle changes nonlinearly with anisotropic factor. To get clear of the changing process of contact angle on grooved surfaces from microscale to macroscale, we carried out theoretical analysis with moment equilibrium method being adopted. In addition, the variation of contact angles in different directions was investigated and a mathematic model to calculate arbitrary contact angles around the elliptic contact line was suggested. For the convenience of potential applications, a symbolic contact angle was proposed to characterize the ellipsoidal cap droplet on grooved surfaces. Our results will offer help to the future design of patterned surfaces in practical applications,and deepen the understanding of wetting behavior on grooved surfaces.