Two kinds of FACs which contain the crack configuratrion parameter were developed, to reflect the fact that the exact J-integral FACs of the circumferentially cracked pipe for different crack configuration are wide sc...Two kinds of FACs which contain the crack configuratrion parameter were developed, to reflect the fact that the exact J-integral FACs of the circumferentially cracked pipe for different crack configuration are wide scattering, especially for load with bending moment. One is the FAC described by material stress-strain parameter and crack configuration parameter, which is similar to R6 op.2 FAC. Another is the general FAC containing crack configuration parameter, which is similar to R6 op.1 FAC. The accuracy and the science significance of those FACs were idscussed in detail in this paper. Not only those FACs take on the advantages of R6 FACs, but also the accuracy of them is better than R6 FACs for defect assessment of piping containing circumferential flaws.展开更多
In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a grea...In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a great variety of shapes. In this paper,a novel yield model is presented and the critical area model of short circuit is correspondingly provided. In comparison with the circular model corrently available, the new model takes the similarity shape to an original defect, the two-dimensional distributional characteristic of defects, the feature of a layout routing and the character of yield estimation into account. As for the aspect of prediction of yield, the experimental results show that the new model may predict the yield caused by real defects more accurately than the circular model does. It is significant that the yield is accurately estimated and improved using the proposed model.展开更多
The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear...The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.展开更多
文摘Two kinds of FACs which contain the crack configuratrion parameter were developed, to reflect the fact that the exact J-integral FACs of the circumferentially cracked pipe for different crack configuration are wide scattering, especially for load with bending moment. One is the FAC described by material stress-strain parameter and crack configuration parameter, which is similar to R6 op.2 FAC. Another is the general FAC containing crack configuration parameter, which is similar to R6 op.1 FAC. The accuracy and the science significance of those FACs were idscussed in detail in this paper. Not only those FACs take on the advantages of R6 FACs, but also the accuracy of them is better than R6 FACs for defect assessment of piping containing circumferential flaws.
文摘In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a great variety of shapes. In this paper,a novel yield model is presented and the critical area model of short circuit is correspondingly provided. In comparison with the circular model corrently available, the new model takes the similarity shape to an original defect, the two-dimensional distributional characteristic of defects, the feature of a layout routing and the character of yield estimation into account. As for the aspect of prediction of yield, the experimental results show that the new model may predict the yield caused by real defects more accurately than the circular model does. It is significant that the yield is accurately estimated and improved using the proposed model.
基金supported by the National Natural Science Foundation of China(No.51975334)Key R&D Project of Shandong Province(No.2019JMRH0407)the Fundamental Research Funds of Shandong University Grant。
文摘The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.