We report room-temperature electroluminescence (EL) from as-deposited amorphous-Si/silicon oxynitride multilayer structure prepared by plasma enhanced chemical vapor deposition. We prepared 8-period a-Si/SiOxNy multil...We report room-temperature electroluminescence (EL) from as-deposited amorphous-Si/silicon oxynitride multilayer structure prepared by plasma enhanced chemical vapor deposition. We prepared 8-period a-Si/SiOxNy multilayer with thickness of 4 nm both for the Si and SiOxNy sublayers. The EL spectral profile exhibits some obviously modulated features upon the barrier material. By adjusting the nitride/oxygen ratio in the barrier layer, the EL peak position can be tuned from 750 nm to 695 nm. From the result of the Raman and Fourier transform infrared results, the EL is attributed to the radiative recombination of electrons and holes in luminescent centers related to the interface. The different interface characteristics induce the shift of EL peak position.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60806046)the Foundation for Distinguished Young Talents in Higher Education of Guangdong (Grant Nos. LYM09101,LYM11090 and LYM10099)
文摘We report room-temperature electroluminescence (EL) from as-deposited amorphous-Si/silicon oxynitride multilayer structure prepared by plasma enhanced chemical vapor deposition. We prepared 8-period a-Si/SiOxNy multilayer with thickness of 4 nm both for the Si and SiOxNy sublayers. The EL spectral profile exhibits some obviously modulated features upon the barrier material. By adjusting the nitride/oxygen ratio in the barrier layer, the EL peak position can be tuned from 750 nm to 695 nm. From the result of the Raman and Fourier transform infrared results, the EL is attributed to the radiative recombination of electrons and holes in luminescent centers related to the interface. The different interface characteristics induce the shift of EL peak position.