In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on...In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.展开更多
In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as w...In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.展开更多
基金Supported by National Science and Technology Support Project(2008BAK49B07)~~
文摘In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.
文摘In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.